Probabilistic uncertainty forecasting in electricity system models in 31 European countries

Xin Wen Marc Jaxa-Rozen Nik Zielonka Evelina Trutnevyte

Renewable Energy Systems group University of Geneva

18th IAEE European Conference July 27, 2023

Swiss National Science Foundation

Grant no. 186834 (ACCURACY)

The need for improving uncertainty analysis in long-range transition **PF**

- Energy projections have shown noticeable and repeated deviations from the real-world transitions.
- We need a better uncertainty analysis

Source: redrawn from the data of Hoekstra (2017)

The need for improving uncertainty analysis in long-range transition

- Energy projections have shown noticeable and repeated deviations from the real-world transitions.
- We need a better uncertainty analysis
- Typical uncertainty methods lead to very broad uncertainty that is hard to work with

The need for improving uncertainty analysis in long-range transition

- Energy projections have shown noticeable and repeated deviations from the real-world transitions.
- We need a better uncertainty analysis
- Typical uncertainty methods lead to very broad uncertainty that is hard to work with
- Projections could be probabilistic • to sharpen uncertainty analysis, but there have been few demonstrations

Probabilistic uncertainty forecasting by hindcasting

- Empirical research on probabilistic uncertainty forecasting largely focused on a single country:
 - Novel probabilistic forecasting methods have been pioneered for the case of the US energy projections with Energy Information Administration (EIA) model (Kaack et al., 2017)
 - It remains unclear to what extent these methods can be applied to other countries and with other models

Probabilistic uncertainty forecasting by hindcasting

- Empirical research on probabilistic uncertainty forecasting largely focused on a single country:
 - Novel probabilistic forecasting methods have been pioneered for the case of the US energy projections with Energy Information Administration (EIA) model (Kaack et al., 2017)
 - It remains unclear to what extent these methods can be applied to other countries and with other models
- Obstacles remain in terms of how to integrate the probabilistic forecasting in energy models rather than to apply probabilistic ranges post-hoc on the modelled projections.
 - Probabilistic cost forecasting methods have been used to estimate future renewable technology costs and explore how technology cost uncertainty propagates through to system costs (Way et al., 2022)
 - Barely any study has focused on the probabilistic uncertainty forecasting of all the model outputs

Objective

By investigating past deviations between our D-EXPANSE* model and real-world transition, we aim for probabilistic density forecasting using D-EXPANSE in 31 European countries.

- How to integrate the probabilistic uncertainty forecasting in national-level electricity system modeling for multiple countries?
- For each model output, what are the most suitable methods for generating probabilistic projections?
- How does the future uncertainty look in national electricity system transitions based on the empirical uncertainty?

* **D-EXPANSE :** Dynamic version of EXploration of PAtterns in Near-optimal energy ScEnarios (Trutnevyte, 2016; Wen et al. 2022)

Method overview: Hindcasting based uncertainty forecasting

Historic data of the national electricity system transitions in Europe in 1990–2019 for retrospective evaluation of models [dataset]

🔞 Marc Jaxa-Rozen; 🔞 Xin Wen; 🔞 Evelina Trutnevyte

(Jaxa-Rozen et al., 2022)

Method overview: Hindcasting based uncertainty forecasting

Method overview: Hindcasting based uncertainty forecasting

* D-EXPANSE : Dynamic version of EXploration of PAtterns in Near-optimal energy ScEnarios (Trutnevyte, 2016; Wen et al. 2022)

RENEWABLE ENERGY SYSTEMS

10

Methods [step 1/4]: Empirical probabilistic forecasting input data generation

□ Step 1: Generate training set and validation set.

The model is trained with different ranges of consecutive training years and validation years

Example: training years 1990–2010, validation 2011–2019

Projections in year 1990–2009 by D-EXPANSE model		Historic data in 1990-2010	2011-2019
Projection 1991:	Errors at horizo	on H=1–20	

Methods [step 1/4]: Empirical probabilistic forecasting input data generation

□ Step 1: Generate training set and validation set.

The model is trained with different ranges of consecutive training years and validation years

Example: training years 1990–2010, validation 2011–2019

Methods [step 1/4]: Empirical probabilistic forecasting input data generation

□ Step 1: Generate training set and validation set.

The model is trained with different ranges of consecutive training years and validation years

Example: training years 1990–2010, validation 2011–2019

Methods [step 2/4]: Multiple empirical probabilistic forecasting methods

1992 1998 2004 2010 2016 2022 2028 2034 Year

Ouantity 75

Methods [step 2/4]: Multiple empirical probabilistic forecasting methods

Step 2: Uncertainty forecasting model

Installed capacity for solar PV in Germany

Multiple probabilistic density forecasting methods based on:

- Out-of-sample testing
- Different projection error types
 - Mean error (ME)
 - Mean logarithmic error (MLE)
 - Mean percentage error (MPE)
- Three probabilistic density assumptions
 - Nonparametric
 - Parametric (Gaussian distribution assumption)
 - Chebyshev's inequality (Gardner, 1988) (Armstrong & Collopy, 2001)

15

Methods [step 2/4]: Multiple empirical probabilistic forecasting methods

Methods [step 3/4 and 4/4]: Model evaluation and future projection

- □ Step 3: Evaluate different probabilistic forecasting methods by continuous ranked probability score (CRPS) (Kaack et al., 2017), or weighted interval score (WIS) (Bracher et al., 2021)
 - The scores can be decomposed into sharpness and calibration:
 - Sharpness: narrow probability density intervals are preferred
 - Calibration: check if the predictive density represents correctly the real-world values

Methods [step 3/4 and 4/4]: Model evaluation and future projection

- □ Step 3: Evaluate different probabilistic forecasting methods by continuous ranked probability score (CRPS) (Kaack et al., 2017), or weighted interval score (WIS) (Bracher et al., 2021)
 - The scores can be decomposed into sharpness and calibration:
 - Sharpness: narrow probability density intervals are preferred
 - Calibration: check if the predictive density represents correctly the real-world values

□ Step 4: Future projection with probabilistic density forecasting

Preliminary results: Probabilisitc density forecasting methods evaluation

Weighted interval scores (WIS) of the installed capacity for solar PV

Preliminary results: Probabilisitc density forecasting methods evaluation

Weighted interval scores (WIS) of the installed capacity for solar PV

WIS of the annual electricity generation for gas

Best Second

Third

MLE_param

_chebyshev

sMPE_chebyshev

param

SMPE

MLE

Щ

SMPE

Щ

Preliminary results: Probabilisitc density forecasting methods evaluation in 31 European countries

Preliminary results: Forecasting for the future (no policy scenario)

(a) Installed capacity for PV with method ME, Chebyshev

Preliminary results: Forecasting for the future (no policy scenario)

(a) Installed capacity for PV with method ME, Chebyshev

Conclusions

- Empirical probabilistic density forecasting in the national electricity system models can help forecast the uncertainty around the model projections, leading to probabilistic projections
- The evaluation of the probabilistic uncertainty forecasting methods is needed to ensure the most suitable choices of methods for different model outputs
- For renewable technologies and fossil fuel-based technologies, different density forecasting methods should be tested and employed in each country, based on their out-of-sample performance

Next steps

- Refine the method used, such as synthesizing different probabilistic projection methods by weighting
- Integrating methods to reduce the limitation of number of samples for longer projection horizon

Thank you for your attention!

Xin Wen Marc Jaxa-Rozen Nik Zielonka Evelina Trutnevyte

Renewable Energy Systems group University of Geneva

xin.wen@unige.ch

Grant no. 186834 (ACCURACY)

References

Armstrong JS, Collopy F. Identification of asymmetric prediction intervals through causal forces. Journal of Forecasting 2001;20:273-83. https://doi.org/10.1002/for.794.

Bracher J, Ray EL, Gneiting T, Reich NG. Evaluating epidemic forecasts in an interval format. PLoS Computational Biology 2021;17:e1008618. https://doi.org/10.1371/JOURNAL.PCBI.1008618.

Gardner ES. A Simple Method of Computing Prediction Intervals for Time Series Forecasts. Management Science 1988;34:541–6. https://doi.org/10.1287/mnsc.34.4.541.

Jaxa-Rozen M, Trutnevyte E. Sources of uncertainty in long-term global scenarios of solar photovoltaic technology. Nature Climate Change 2021;11:266–73. https://doi.org/10.1038/s41558-021-00998-8.

Jaxa-Rozen M, Wen X, Trutnevyte E. Historic data of the national electricity system transitions in Europe in 1990–2019 for retrospective evaluation of models. Data in Brief 2022;43:108459. https://doi.org/10.1016/J.DIB.2022.108459.

Jaxa-Rozen M, Wen X, Trutnevyte E. Historic data of the national electricity system transitions in Europe in 1990–2019 for retrospective evaluation of models [dataset]. 2022. DOI: 10.5281/zenodo.6338417.

Kaack LH, Apt J, Morgan MG, McSharry P. Empirical prediction intervals improve energy forecasting. Proceedings of the National Academy of Sciences 2017;114:8752–7. https://doi.org/10.1073/pnas.1619938114.

Morgan MG, Keith DW. Improving the way we think about projecting future energy use and emissions of carbon dioxide. Climatic Change 2008;90:189–215. https://doi.org/10.1007/s10584-008-9458-1.

Trutnevyte E. Does cost optimization approximate the real-world energy transition? Energy 2016;106:182-93.

Trutnevyte E, Zielonka N, Wen X. Crystal ball to foresee energy technology progress? Joule 2022;6:1969–70. https://doi.org/10.1016/J.JOULE.2022.07.007.

Way R, Ives MC, Mealy P, Farmer JD. Empirically grounded technology forecasts and the energy transition. Joule 2022;6:2057–82. https://doi.org/10.1016/j.joule.2022.08.009.

Wen X, Jaxa-Rozen M, Trutnevyte E. Accuracy indicators for evaluating retrospective performance of energy system models. Applied Energy 2022;325:1–30. https://doi.org/10.1016/j.apenergy.2022.119906.

Methods Density forecast methods

