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The need for improving uncertainty analysis in long-range transition

Source: redrawn from the data of Hoekstra (2017)
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• Energy projections have shown 
noticeable and repeated deviations 
from the real-world transitions. 

• We need a better uncertainty analysis
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to very broad uncertainty that is 
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The need for improving uncertainty analysis in long-range transition

Source: redrawn from the data of Hoekstra (2017)

International Energy 
Agency projections 

(colored lines)

Real-world data

• Energy projections have shown 
noticeable and repeated deviations 
from the real-world transitions. 

• We need a better uncertainty analysis

(Jaxa-Rozen & Trutnevyte, Nature and Climate Change, 2021) 

• Projections could be probabilistic 
to sharpen uncertainty analysis, 
but there have been few 
demonstrations

• Typical uncertainty methods lead 
to very broad uncertainty that is 
hard to work with

(Kaack et al., PNAS, 2017) 

Density intervals

Density forecasts for natural gas prices
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Probabilistic uncertainty forecasting by hindcasting

• Empirical research on probabilistic uncertainty forecasting largely focused on a single country:
• Novel probabilistic forecasting methods have been pioneered for the case of the US energy projections 

with Energy Information Administration (EIA) model (Kaack et al., 2017)
• It remains unclear to what extent these methods can be applied to other countries and with other models
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Probabilistic uncertainty forecasting by hindcasting

• Empirical research on probabilistic uncertainty forecasting largely focused on a single country:
• Novel probabilistic forecasting methods have been pioneered for the case of the US energy projections 

with Energy Information Administration (EIA) model (Kaack et al., 2017)
• It remains unclear to what extent these methods can be applied to other countries and with other models

• Obstacles remain in terms of how to integrate the probabilistic forecasting in energy models rather than to 
apply probabilistic ranges post-hoc on the modelled projections. 
• Probabilistic cost forecasting methods have been used to estimate future renewable technology costs 

and explore how technology cost uncertainty propagates through to system costs (Way et al., 2022)
• Barely any study has focused on the probabilistic uncertainty forecasting of all the model outputs
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Objective

• How to integrate the probabilistic uncertainty forecasting in national-level electricity system
modeling for multiple countries?

• For each model output, what are the most suitable methods for generating probabilistic
projections?

• How does the future uncertainty look in national electricity system transitions based on the
empirical uncertainty?

By investigating past deviations between our D-EXPANSE* model and real-world transition, we aim for 
probabilistic density forecasting using D-EXPANSE in 31 European countries.

* D-EXPANSE : Dynamic version of EXploration of PAtterns in Near-optimal energy ScEnarios (Trutnevyte, 2016; Wen et al. 2022)
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Method overview: Hindcasting based uncertainty forecasting 

(Jaxa-Rozen et al., 2022) 
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Method overview: Hindcasting based uncertainty forecasting 

Hindcasting: Cost-optimization based 
electricity sector modeling

With exogenously given demand
For now, exclude energy policies and targets 

(Jaxa-Rozen et al., 2022) 

31 national models (EU27, UK, Switzerland, Norway, Iceland)

D-EXPANSE* model

Least-cost pathways

Historical pathway 1990–2019

Projection year 1990
1991

2019
...

(Wen et al., 2022)
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* D-EXPANSE : Dynamic version of EXploration of PAtterns in Near-optimal energy ScEnarios (Trutnevyte, 2016; Wen et al. 2022)

Method overview: Hindcasting based uncertainty forecasting 

Hindcasting: Cost-optimization based 
electricity sector modeling

With exogenously given demand
For now, exclude energy policies and targets 

(Jaxa-Rozen et al., 2022) 

31 national models (EU27, UK, Switzerland, Norway, Iceland)

D-EXPANSE* model

Least-cost pathways

Historical pathway 1990–2019

Projection year 1990
1991

2019
...

(Wen et al., 2022)

Deviations between pathways
 under four model versions

Uncertainty forecasting model

Multiple density forecasting methods based 
on 
• out-of-sample testing
• different types of projection errors
• three assumptions on error distributions

Deviations of projections
 in different projection years

.

Projection year 1990
1991

.

2019

.
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Historic data in 1990-2010 2011-2019Projections in year 1990–2009 
by D-EXPANSE model

Errors at horizon H=1–20Projection 1991:

Methods [step 1/4]: Empirical probabilistic forecasting input data generation
q Step 1: Generate training set and validation set. 
The model is trained with different ranges of consecutive training years and validation years
Example: training years 1990–2010, validation 2011–2019
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Historic data in 1990-2010 2011-2019Projections in year 1990–2009 
by D-EXPANSE model

Errors at horizon H=1–20Projection 1991:
Errors at horizon H=1–19
Errors at horizon H=1–18

Errors at horizon H=1

…… ……

Projection 1992:
Projection 1993:

Projection 2009:

Methods [step 1/4]: Empirical probabilistic forecasting input data generation
q Step 1: Generate training set and validation set. 
The model is trained with different ranges of consecutive training years and validation years
Example: training years 1990–2010, validation 2011–2019
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Historic data in 1990-2010

Error distribution 
at time horizons H=1–20

Training set Validation set

1990 2010 2011–2019
Out-of-sample

2011-2019Projections in year 1990–2009 
by D-EXPANSE model

Errors at horizon H=1–20Projection 1991:
Errors at horizon H=1–19
Errors at horizon H=1–18

Errors at horizon H=1

…… ……

Projection 1992:
Projection 1993:

Projection 2009:

Methods [step 1/4]: Empirical probabilistic forecasting input data generation
q Step 1: Generate training set and validation set. 
The model is trained with different ranges of consecutive training years and validation years
Example: training years 1990–2010, validation 2011–2019



RENEWABLE ENERGY SYSTEMS 14

Methods [step 2/4]: Multiple empirical probabilistic forecasting methods 

Step 2: Uncertainty forecasting model

Installed capacity for solar PV in Germany

Historic data

Projections of different initial years
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Methods [step 2/4]: Multiple empirical probabilistic forecasting methods 

Step 2: Uncertainty forecasting model

Multiple probabilistic density forecasting methods based on: 
• Out-of-sample testing

• Different projection error types
• Mean error (ME)
• Mean logarithmic error (MLE)
• Mean percentage error (MPE)

• Three probabilistic density assumptions
• Nonparametric
• Parametric (Gaussian distribution assumption)
• Chebyshev’s inequality (Gardner, 1988) (Armstrong & Collopy, 2001)

Installed capacity for solar PV in Germany

Historic data

Projections of different initial years
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Methods [step 2/4]: Multiple empirical probabilistic forecasting methods 

Step 2: Uncertainty forecasting model

Multiple probabilistic density forecasting methods based on: 
• Out-of-sample testing

• Different projection error types
• Mean error (ME)
• Mean logarithmic error (MLE)
• Mean percentage error (MPE)

• Three probabilistic density assumptions
• Nonparametric
• Parametric (Gaussian distribution assumption)
• Chebyshev’s inequality (Gardner, 1988) (Armstrong & Collopy, 2001)

Installed capacity for solar PV in Germany

Historic data

Projections of different initial years
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q Step 3: Evaluate different probabilistic forecasting methods by continuous ranked probability score 
(CRPS) (Kaack et al., 2017), or weighted interval score (WIS) (Bracher et al., 2021)

Methods [step 3/4 and 4/4]: Model evaluation and future projection

§ The scores can be decomposed into sharpness and calibration:
§ Sharpness: narrow probability density intervals are preferred
§ Calibration: check if the predictive density represents correctly the real-world values



RENEWABLE ENERGY SYSTEMS 18

q Step 3: Evaluate different probabilistic forecasting methods by continuous ranked probability score 
(CRPS) (Kaack et al., 2017), or weighted interval score (WIS) (Bracher et al., 2021)

Methods [step 3/4 and 4/4]: Model evaluation and future projection

q Step 4: Future projection with probabilistic density forecasting 

Historic data

1990 2019

Projection: from the modeled EXPANSE scenario 
Probabilistic forecasting: based on the forecasting errors

2035

Projection

§ The scores can be decomposed into sharpness and calibration:
§ Sharpness: narrow probability density intervals are preferred
§ Calibration: check if the predictive density represents correctly the real-world values
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Preliminary results: Probabilisitc density forecasting methods evaluation
Weighted interval scores (WIS) of the installed capacity for solar PV 
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Preliminary results: Probabilisitc density forecasting methods evaluation
Weighted interval scores (WIS) of the installed capacity for solar PV 

WIS of the annual electricity generation for gas
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Preliminary results: Probabilisitc density forecasting methods evaluation in 31 European countries

Generation: Run-of-river hydropower (RoR)

Capacity and generation: PV, Onshore wind, offshore wind
Generation: Hydro dam, storage, Biomass, biogas, net import, 
hard coal, brown coal
Capacity: Oil

Capacity and generation: gas, nuclear
Capacity: Hydro dam, RoR, storage, biomass, biogas, 
net import, hard coal, brown coal 

Generation: Geothermal, oil

Capacity and generation: Waste incineration

Capacity: Geothermal
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Preliminary results: Forecasting for the future (no policy scenario)
(a) Installed capacity for PV with method ME, Chebyshev

Belgium UK Greece

Belgium Germany Finland
(b) Annual generation for gas with method ME, non-parametric
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Preliminary results: Forecasting for the future (no policy scenario)
(a) Installed capacity for PV with method ME, Chebyshev

Belgium UK Greece

Belgium Germany Finland
(b) Annual generation for gas with method ME, non-parametric
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Conclusions

Next steps
• Refine the method used, such as synthesizing different probabilistic projection methods by weighting
• Integrating methods to reduce the limitation of number of samples for longer projection horizon

• Empirical probabilistic density forecasting in the national electricity system models can help forecast the 
uncertainty around the model projections, leading to probabilistic projections

• The evaluation of the probabilistic uncertainty forecasting methods is needed to ensure the most suitable 
choices of methods for different model outputs

• For renewable technologies and fossil fuel-based technologies, different density forecasting methods 
should be tested and employed in each country, based on their out-of-sample performance
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Probabilistic density assumption Parametric Based on error type 

Non-parametric No

Mean error (ME)

Mean logarithmic error (MLE)

Symmetric mean percentage error (sMPE)

Gaussian (assume a normal distribution)

Yes

Chebyshev’s inequality (for any distribution)

Yes

Density forecast methods 
Methods


