

Motivation

Net 0 emissions

Transport & heat electrification

Load increase

V2G

40% load increase from **2020 to 2050**

A mitigation strategy?

What are the benefits of V2G for the Swiss electricity system?

Curtailment

Dispatch

Costs

25.07.2023

Agenda

- 1. Introduction and research question
- 2. Methodology
- 3. Results
- 4. Discussion and conclusions

The optimization model

Input Model Output Techno-Economic **Technologies** 2020-2050 Obj. Function: cost optimal dispatch of generation and flexible demand **Electricity demand** [GW] Dispatch [GWh] Method: LP **Generators** [GW] Curtailment Resolution: 1h, nodal [GWh] **Electricity generation and** fuel costs [EUR] Weather [Wind, Irradiance] **Transmission system** Electricity system [Lines, Transformers] **Electricity cost** [EUR/MWh] V2G Imports / exports [TWh] **Available storage capacity** [GWh] **Grid loading** [GW] Available power

Scenarios

2020-2050

EV

EV charging is part of the demand

Reference scenario

EV flex

EV charging is flexible with 0 costs

V2G

V2G with 0 costs is implemented

V2G XL

XL V2G with 0 costs is implemented

Agenda

- 1. Introduction and research question
- 2. Methodology
- 3. Results
- 4. Discussion and conclusions

Reference (EV) scenario

8

Reference (EV) scenario

9

Curtailment

EV-offered flexibility reduces curtailment, favoring the integration of VRES

Reliability and Risk Engineering 25.07.2023

Imports/ exports

Year

Yearly exports are increased with higher EV-offered flexibility

Winter

EV-offered flexibility doesn't impact the winter imports

System costs

System costs are reduced with higher EV-offered flexibility

Range of system cost reduction across all V2G scenarios: 64 – 107 EUR/car/y

38 EUR/car/y

92 EUR/car/y

Net load variability

Net load = Load – VRES generation

Reliability and Risk Engineering 25.07.2023

Net load variability

EV-offered flexibility reduces net load variability

Reliability and Risk Engineering 25.07.2023

Agenda

- 1. Introduction and research question
- 2. Methodology
- 3. Results
- 4. Discussion and conclusions

Reliability and Risk Engineering 25.07.2023

Discussion

What can be improved:

- Include an electricity market model
- Study the impact of V2G participation in the balancing market
- Study the effect of V2G on the distribution grid
- More research on EV behavior and V2G availability

Reliability and Risk Engineering 25.07.2023

Conclusion

- V2G scenarios allow us to observe its benefits for the electricity system
- Benefits are observed in dispatch, trade, curtailment and system costs
- Additional flexibility favors the integration of VRES
- Is it economically viable?

Thank you for your attention!

Questions?

Interactive web-viewer

