25th July 2023

EU Emission Trading and Aluminium Imports

Evidence for Carbon Leakage

Jacob Thrän

Introduction: Carbon Leakage

Carbon leakage is the increase in a regions emissions caused by another regions climate policy

Carbon leakage rate =

Increase in Emissions in non-committed region

Decrease in emissions in committed region

Increase in emissions due to carbon price

Committed region *(EU)*

Decrease in emissions

due to carbon price

Carbon-intensive imports

Non-committed region (non-EU)

London Introdu	ction: Litera	ature on	EU ETS	25 th July 2023
Study	Industry	Period	Leakage rate	Approach
Antimiani et al. (2016)	Multi-sectoral	2010 – 2050	16 – 49%	CGE (GDynE)
Böhringer et al. (2017)	Multi-sectoral	2011	17 – 20%	CGE (GTAP)
Demailly & Quirion (2006)	Cement	2005 – 2011	50%	Spatial Model
Kuik & Hofkes (2010)	Cement & Steel	2005 – 2008	2% – 35%	CGE (GTAP-E)
Gerlagh & Kuik (2014)	Multi-sectoral	2007 – 2020	-1% - 10%	CGE (GTAP-E)
Alexeeva-Talebi et al. (2012)	Metals & Minerals	2004 – 2020	10% – 15%	CGE (PACE)
Branger et al (2016)	Cement & Steel	2005 – 2012	No short run	ARIMA + Prais-
Reinaud (2008)	Aluminium	2005 – 2006	Not significant	Prais-Winsten
Sartor (2012)	Aluminium	2005 – 2011	No evidence	Johansen cointegr.
Naegele & Zaklan (2019)	Multi-sectoral	2004 – 2011	No evidence	Panel Data
Healy et al. (2018)	Cement & Aluminium	2000 – 2016	No evidence	Panel Data
Boutabba & Lardic (2017)	Cement & Steel	2005 – 2015	Negligible	Rolling cointegr.

EU ETS and Aluminium Imports

EU ETS and Aluminium Imports 25th July 2023

Imperial College London

Introduction: Allowance Allocation & Aluminium Sector

- Since phase III, power stations buy most their allowances in auctions
- Industry continues to receive them for free
- Aluminium mostly emits indirectly, thereby being at risk of carbon leakage while paying indirectly for allowances

Hypothesis and Empirical Model

Hypothesis: Aluminium Imports ~ Allowance price

 $N_t = \beta_0 + \beta_{1,i} \log(E_t) \times P_i + \beta_2 \log(I_t) + \beta_{3,j} M_j + \varepsilon_t$

- N_t : Monthly Net Aluminium Imports (\in)
- E_t : Avg. Monthly EU ETS Allowance Price (\in)
- I_t : Monthly EU Industrial Output Index (based on 2010: 100)
- P_i : Dummy for each phase of the EU ETS (I IV)
- M_i : Dummy for months of the year (1 12)
- \rightarrow Breusch-Godfrey test indicates autocorrelated residuals

EU ETS and Aluminium Imports

 $-\delta \varepsilon_{t-1}$

Serial Correlation Remedy Procedures

Assume:
$$\varepsilon_t = \delta \varepsilon_{t-1} + u_t \quad \Rightarrow \quad u_t \in \varepsilon_t - \delta \varepsilon_{t-1}$$

 $Y_t = \beta_0 + \beta X_t + \varepsilon_t \quad \Rightarrow \quad Y_t - \delta Y_{t-1} = (1 - \delta)\beta_0 + \beta_1 (X_t - \delta X_t)$

- Cochrane-Orcutt (CO): $\varepsilon_t \sim \delta \varepsilon_{t-1}$
- Prais-Winsten (PW): $\varepsilon_t \sim \delta \varepsilon_{t-1}$
- First Differences (FD): $\delta = 1$
- Hildreth-Lu (HL): minimise SSE
- Lagrange-Multiplier Minimisation (*LM_{min}*): optimise Breusch-Godfrey

Regression results

- Phase IV shows a significant correlation between allowance price and net aluminium imports in 3 regressions
- The First-Differences regression shows no impact of the EU industrial output on imports → this indicates that it "overcorrected"

Note:

Net Aluminium Imports (€MM)				25 th July 2023	
	OLS	LM _{min}	CO/PW/HL	First Diff.	
	$(\delta = 0)$	$(\delta = 0.63)$	$(\delta \approx 0.85)$	$(\delta = 1)$	
$log(I_t)$	24.388***	14.523***	6.072*	3.214	
	(2.012)	(2.842)	(3.306)	(3.376)	
$log(E_t) \times Phase I$	-40.323***	-2.034	9.010	9.613	
	(14.499)	(16.829)	(16.879)	(16.468)	
$log(E_t) \times Phase II$	-23.874*	-12.968	—5.365	-4.191	
	(14.119)	(20.827)	(27.753)	(30.477)	
$log(E_t) \times Phase III$	-0.941	22.293	27.468	-52.969	
	(14.625)	(21.402)	(33.209)	(55.236)	
$log(E_t) \times Phase IV$	72.836***	112.159***	120.431***	12.523	
	(13.287)	(20.833)	(34.559)	(62.071)	
Constant	-1,963.425***	-441.270***	-116.304**	-104.645***	
	(205.980)	(109.455)	(55.123)	(23.686)	
Observations	200	199	199	199	
R ²	0.663	0.577	0.573	0.585	
Adjusted R ²	0.633	0.540	0.535	0.548	
Resid. Std. Error (df = 182)	134.759	96.220	92.372	94.381	
F Statistic (df = 16; 182)	22.384***	15.505***	15.261***	16.006***	

*p<0.1; **p<0.05; ***p<0.01

ELLETS and Aluminium Imports

Conclusion

- Empirical literature is unable to back-up model-based predictions of carbon leakage from the EU ETS
- The Aluminium sector is unique because it emits mostly indirectly
- A novel autocorrelation procedure is deployed on the monthly data
- In phase IV, a 1%-increase in price caused a €1.12MM rise in imports

Next Steps

- Relate allowance price increases to cap reduction to estimate CLR
- Proper statistical scrutiny for the newly deployed method (LM_{min})
- Deal with inaccuracies: $EU \neq EEA$
- More research in the EU Aluminium sector is needed to empirically quantify carbon leakage in EUETS:
 →ARIMA, Cointegration, Diff-in-diff

EU ETS and Aluminium Imports

25th July 2023

Thanks for listening! Questions?

Jacob Thrän

j.thran22@imperial.ac.uk

EU ETS and Aluminium Imports 25th July 2023

Autocorrelated Residuals

- Autocorrelated errors violate the Gauss-Markov assumptions
- Breusch-Godfrey test confirms autocorrelation

Serial Correlation Remedy Procedures

 $Y_t = \beta_0 + \beta X_t + \varepsilon_t$

Imperial College

London

• Assume: $\varepsilon_t = \delta \varepsilon_{t-1} + u_t$

$$u_t = \varepsilon_t - \delta \varepsilon_{t-1}$$

$$Y_t - \delta Y_{t-1} = (1 - \delta)\beta_0 + \beta(X_t - \delta X_{t-1}) + u_t$$

- Assume: $\varepsilon_t = \delta \varepsilon_{t-1} + u_t$ $\rightarrow u_t = \varepsilon_t - \delta \varepsilon_{t-1}$
- $Y_t \delta Y_{t-1} = (1 \delta)\beta_0 + \beta(X_t \delta X_{t-1}) + u_t$
- + δ can be estimated by regressing ε_t & ε_{t-1} (Cochrane-Orcutt/Prais-Winst-
- δ can also be chosen to minimise Sum of Squared Errors (Hildreth-Lu)
- We propose minimising the Lagrange Multiplier of Breusch-Godfrey (LM_m
- δ can be estimated by regressing $\varepsilon_t \& \varepsilon_{t-1}$ (Cochrane-Orcutt/Prais-Winsten)
- δ can also be chosen to minimise Sum of Squared Errors (Hildreth-Lu)
- We propose minimising the Lagrange Multiplier of Breusch-Godfrey (LM_{min})

EU ETS and Aluminium Imports 25th July 2023

Serial correlation results

- Minimising the sum of squared errors (HL) leads to a similar result as the error regression estimation (CO/PW) $\rightarrow \delta \approx 0.85$
- The newly proposed LM_{min} procedure yields a significantly different result that with better $LM \rightarrow \delta = 0.63$
- New procedure should be interpreted with care

Carbon border adjustment mechanism (CBAM)

- Passed by EU parliament in May 23
- Aims to reduce carbon leakage

FINANCIAL TIMES

EU's trading partners accuse bloc of protectionism over carbon tax plan

 FORMACTIV
 The Capitals
 The Brief
 Ukraine
 Intelligence

 Agrifood
 Economy
 Energy & Environment
 Global Europe
 Health
 Politics
 Technology
 Transport

 World's poorest should not pay for climate action while EU industry pollutes for free
 Intelligence
 Intelligence

- What is carbon leakage?
- What estimates of carbon leakage are there for the EU ETS?
- Why is the Aluminium sector especially suited for improving those estimates?

EU ETS and Aluminium Imports

25th July 2023

Imperial College London

Research Aim

<u>Hypothesis:</u> The ETS allowance price positively impacts net aluminium imports

- The impact is expected to occur indirectly via the electricity price
- Is there a significant correlation and what is the magnitude of the effect?

Carbon border adjustment mechanism (CBAM)

- Passed by EU parliament in May 23
- Will gradually enter enforcement between October 23 and January 25
- Extension to the EU Emission Trading System (EU ETS) to cover emissions embodied in imports
 - \rightarrow prevent carbon leakage

Africa sees new wall in EU's carbon border scheme [Business Africa]

Outline

- 1. Carbon leakage
- 2. Existing Literature for the EU ETS
- 3. Empirical Model
- 4. Autocorrelation
- 5. Results
- 6. Conclusion and Next Steps

25th July 2023

Carbon border adjustment mechanism (CBAM)

Africa sees new wall in EU's carbon border scheme [Business Africa]

FINANCIAL TIMES EU's trading partners accuse bloc of protectionism over carbon tax plan

 EURACTIV
 The Capitals
 The Brief
 Ukraine
 Intelligence

 Agrifood
 Economy
 Energy & Environment
 Global Europe
 Health
 Politics
 Technology
 Transport

 World's poorest should not pay for climate action while EU industry pollutes for free
 Intelligence
 Intelligence

Outline

- 1. Introduction
 - I. What is carbon leakage?
 - II. Existing Literature on EU ETS
 - III. The Aluminium Sector
- 2. Methodology
 - I. Empirical Model
 - II. Autocorrelation
- 3. Results
- 4. Conclusion and Next Steps

[висн] Going beyond default intensities in an EU carbon border adjustment mechanism

M Mehling, RA Ritz - 2020 - JSTOR

FURACTIV

Africa sees new wall in EU's carbon border scheme [Business Africa]

FINANCIAL TIMES

EU's trading partners accuse bloc of protectionism over carbon tax plan

AgrifoodEconomyEnergy & EnvironmentGlobal EuropeHealthPoliticsTechnologyTransportWorld's poorest should not pay for climate action while EU industry
pollutes for free

Serial Correlation Test and Remedy Procedures

Breusch-Godfrey Test Remedy Procedures:

•

 The lagged error terms are added to the regression

 The Lagrange Multiplier (LM) is computed to assess
 whether any of the added terms is significant

• First-order autocorrelated errors: $\varepsilon_t = \delta \varepsilon_{t-1} + u_t$

- Change regression from $Y_t = \beta_0 + \beta X_t + \varepsilon_t$ to: $Y_t - \delta Y_{t-1} = (1 - \delta)\beta_0 + \beta (X_t - \delta X_{t-1}) + \varepsilon_t - \delta \varepsilon_{t-1}$ $\rightarrow \varepsilon_t - \delta \varepsilon_{t-1} = u_t$
- δ can be estimated by regressing ε_t against ε_{t-1} (Cochrane-Orcutt & Prais-Winsten)
- δ can also be chosen to minimise SSE (Hildreth-Lu)
- This work proposes choosing δ to minimise the LM

EU ETS and Aluminium Imports

Carbon border adjustment mechanism (CBAM)

- Extension to the EU Emission Trading System (EU ETS) to cover emissions embodied in imports
- It was officially passed as a law by the EU parliament in May 2023
- The CBAM will gradually enter enforcement between October 2023 and January 2025

Africa sees new wall in EU's carbon border scheme [Business Africa]

[ВUCH] Going beyond default intensities in an EU carbon border adjustment mechanism M Mehling, RA Ritz - 2020 - JSTOR

😑 Real Instituto Elcano

El "arancel al carbono (CBAM)": ¿proteccionismo verde o liderazgo global contra el cambio climático?

FINANCIAL TIMES

EU's trading partners accuse bloc of protectionism over carbon tax plan

Allowance allocation in the EU ETS

- Since phase III, the power sector acquires most allowances in auctions while industry receives them for free
- Aluminium mostly emits indirectly, thereby being at risk of carbon leakage while paying indirectly for allowances

EU ETS and Aluminium Imports

25th July 2023

Research Aim

- The hypothesis is that an increased EU allowance price will increase costs of domestically producing aluminium
- This will in turn increase
 Aluminium imports
- We should be able to observe a correlation between allowance price and imports

EU ETS and Aluminium Imports

EU ETS and Aluminium Imports