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There are many diverse energy storage technologies...
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... that all have very different characteristics
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At the same time, there is a wide range of applications...
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At the same time, there is a wide range of applications...

Type of economic value
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Storage is complex.

There are many
technologies and
services they can
provide for the clean
energy transition.



Falling prices can be expressed by their ‘experience curve’

Solar PV modules ($/kW)
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Lithium-ion prices fall at a similar rate as solar PV

Lithium-ion battery packs ($/kWh)
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Similar trends are seen across other storage technologies

Experience Data
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technologies could see the same.



Lifetime cost is the metric for economic decision-making

* Accounts for all cost
components required to
serve specific application
(e.g. power conversion to
enable fast response)

* Includes replacement cost
to account for degradation

Levelised

Cost Of
Storage

NEQU | W& |
oYj| -

Electricity that is discharged
each cycle; should include
annual degradation

If it refers to electricity charged
(against common practice),
round-trip efficiency and DoD
must be accounted for here

Cost to
operate,
insure and
periodically
service
technology
components

* Reflects round-trip efficiency,
because more energy is
purchased than discharged
(respective power price
depends on application)

* Also accounts for auxiliary
energy (e.g. air conditioning)

Can be acostora
value depending
on the reusability
or recyclability of
the technology, its
components and
raw materials
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- Gpf ghritg

(all costs and
enerqy output are

Qutput
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discounted over
the lifetime)

* Determined by application
served by the storage system

* Can have significant impact on
degradation and overall
lifetime as cycle life is limiting
factor for most technologies

* Option 1 - Technical: Number of
years after which energy
capacity degraded to e.g. 80%

* Option 2 - Economic: Pre-defined
number of years, e.g. secured

revenue



Comparisons must use application-specific lifetime cost

Providing peak capacity (300 cycles per year x 4 hours per cycle):

Lithium-ion:

(362 S/kWh capex, 86% efficiency, 3500 cycle lifetime)
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Vanadium redox -flow:
(625 $/kWh capex, 68% efficiency, 20000 cycle lifetime)
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The competitiveness of technologies will change over time

Peak capacity

Power capacity 10 MW
Discharge duration |4 hours
Annual cycles 300

Response time

>10 seconds

Electricity price
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Current costs and how fast they fall with scale-up
determines which technologies win each application

2020: 2030:
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Currently, offering 4-10 hours of storage is the cheapest
Moving energy between seasons will cost ~10x more...

1024
USD/MWh
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... but that is what we need (at PWh-scale!)
if we are to end our reliance on fossil fuels

European Union - United States

US & EU seasonal 1250

natural gas storage:
1000 -

750 A
500 - %
250 -

0

Natural gas storage [TWh__ ]

/‘,

2011 2012 2013 2014 2015 2016

Some routes forwards:

* Push long-duration technologies with low power costs
* Develop new products to monetize longer duration storage
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2020

2021
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You can reproduce and customise
all the analyses presented here:

www.EnerqyStorage.ninja
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http://www.energystorage.ninja/
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