18TH IAEE EUROPEAN CONFERENCE

Milan, 24-27 July, 2023

A MERIT-ORDER FOR END-USES OF LOW-CARBON HYDROGEN

Ph.D. Candidates:

Albin Kasser, Paris-Saclay Doctoral School, INRAE, AgroParisTech, Paris-Saclay Applied Economics Maryam Sadighi, Paris-Saclay Doctoral School- University of Évry, EPEE

Directors of the thesis:

Guy Meunier, INRAE, AgroParisTech, Paris-Saclay Applied Economics Maria-Eugenia Sanin, University of Paris-Saclay- University of Évry

Supervisors:

Elodie Le Cadre Loret, ENGIE R&I Jean-Pierre Ponssard, CREST- École Polytechnique – Chair Energy & Prosperity Murès Zarea, ENGIE R&I

Context: Why a «Merit-Order of Renewable Hydrogen for End-Uses»?

- Merit-Order of Hydrogen" for end-uses: how to optimally allocate renewable hydrogen among end-use sectors
 - Availability of renewable hydrogen is constrained and uncertain
 - There is a **loss of efficiency** in converting renewable electricity to hydrogen/e-fuels
- Why do the end-use sectors have different priorities to deploy hydrogen?
 - Competitive low-carbon technology alternatives might not exist for some applications → no-regret sectors for hydrogen
 - Sectors vary in the costs associated with implementing hydrogen technologies
 - Sectors vary in the **most competitive reference fossil fuels**
 - Sectors vary in their **potential for reducing emissions**
 - Implementing hydrogen in some sectors/aggregation of some sectors might generate a higher learning spillover impact
 - Technology Readiness Level (TRL) of H₂-based technology is different for each sector
 - Some sectors have higher safety issues to deploy hydrogen (e.g. mobile applications)

Motivation: Several approaches exist for allocating hydrogen among sectors, but sectoral interactions and competitive alternatives are overlooked

- Conventional MAC Curves: similar to *McKinsey & Company (2010) "Global GHG Abatement Cost Curve v2.1":* prioritize sectors with the lowest abatement costs (some studies for H₂ such as *BloombergNEF* (2020) *"Hydrogen Economy Outlook"*)
- MAC over the low-carbon alternative: Ueckerdt et al. (2021) "Potential and risks of hydrogen-based e-fuels in climate change mitigation", Nature Climate Change: prioritizes e-fuels for sectors that are inaccessible to direct electrification.
- **Multi-criteria analysis:** Appert and Geoffron (2021) "What merit order for hydrogen development?": considers factors beyond just abatement cost, including the availability of alternatives and safety concerns.
- Equilibrium of Supply and Demand: *M.F. Ruth et al (@NREL).* (2020), "The Technical and Economic Potential of the H2@Scale Concept within the United State": defines optimal quantity where the demand price is equal to the supply price of hydrogen.

within the United State, 2020

3

Scope: Hydrogen Valleys: Stepping Stones in the Development of a Global Hydrogen Ecosystem

- What is a Hydrogen Valley?
 - First regionally integrated hydrogen ecosystems, so-called **hydrogen hubs**, **hydrogen clusters** or **"Hydrogen Valleys"** pave the way for the setup of regional 'mini hydrogen economies' by combining or pooling hydrogen supply and demand to increase scale, maximize asset utilization and bringing down costs.
- What makes a Hydrogen Valley?

Overview of the Paper

Research Question

• What is the **optimal merit-order** for end-uses of low-carbon hydrogen in a local ecosystem?

Methodology

- Dynamic optimization of the overall welfare of a hydrogen ecosystem
- Calibration of parameters
- Sensitivity Analysis

Contributions

- Applied Economy of low-carbon Hydrogen
- Climate policy: the optimal policy design to acheive the socially optimal merit-order

Main Findings

- We propose a methodology to define an optimal "Merit-Order for End-Uses of Hydrogen" considering additional dimensions: the constraint on hydrogen supply in short-term, competition among different zero and low-carbon technologies, the interactions between sectors to handle economies of scale, as well as the time perspective.
- The optimal policy to achieve the socially optimal merit order in a local ecosystem is designed

Defining the merit-order

What factors impact the demand for low-carbon hydrogen?

The economic Welfare (W_{Di}) of a «No-Regret» End-user of Hydrogen (no low-carbon alternative exists):

 $W_{Di} = \Pi_i - (p_{CO2}E_i + C_{Fi} + p_{Fi})(N_i - q_i) - \frac{1}{n_{Hi}}(C_{Hi} + p_H)q_i$ $0 < q_i < H < N_i$ 200 **WtP** C_{Hi} Cost of deployment of H2 based technology (\notin /MWh) \prod_{i} Total Profit of End-user p_{Fi} Price of fossil fuel (\in /MWh) 180 N_i Total demand of the end-user (MWh) p_{CO2} Price of CO2 (€/tCO2) p_H H2 price (\in /MWh) 160 E_i Emission intensity of fossil Quantity of H2 uptake (MWh) 140 based technology (€/MWh) H2 Price (€/MWh) Cost of deployment of fossil Efficiency of H2 based technology C_{Fi} 120 based technology (€/MWh) 100 $\max W_{Di}:\begin{cases} q_i = H & \text{if } p_{CO2} > \Delta_i \\ q_i = 0 & \text{if } p_{CO2} < \Delta_i \end{cases}$ Abatement Cost: $\Delta_i = \frac{(C_{Hi} + p_H) - (C_{Fi} + p_{Fi})}{n \dots F_i}$ 80 60 40 Willingness-to-Pay $WtP_i = (p_{CO2}E_i + C_{Fi} + p_{Fi}) - \frac{1}{\eta_{Hi}}C_{Hi}$ (WtP): $\max_{i} W_{Di} :\begin{cases} q_i = H & \text{if } p_{H2} < WtP_i \\ q_i = 0 & \text{if } p_{H2} > WtP_i \end{cases}$ 200 400 -200 0 600 800 1000 q_i CO2 Price (€/tCO2)

Numerical illustration of a valley with an ammonia production plant

 $p_{CO2} = \Delta_i$ or $p_{H2} = WtP_i$: The end user is indifferent to using fossil or H2-based technology

Total Welfare of the Demand Side of a Two-End-User Ecosystem:

$$W_{T} = W_{D1} + W_{D2} \qquad 0 < q_{i} < H < N_{i} \\ 0 < q_{1} + q_{2} < H$$

$$\max_{q_{i}} W_{T}: \begin{cases} q_{1} = H, & q_{2} = 0 & \text{if } p_{CO2} > \Delta_{opp} \\ q_{1} = 0, & q_{2} = H & \text{if } p_{CO2} < \Delta_{opp} \end{cases}$$
Opportunity Cost of Abatement:
$$\Delta_{opp} = \frac{(C_{H1} - C_{F1} - p_{F1}) - (C_{H2} - C_{F2} - p_{F2})}{\eta_{H1}E_{1} - \eta_{H2}E_{2}}$$

$$\max_{q_{i}} W_{T}: \begin{cases} q_{1} = H, & q_{2} = 0 & \text{if } p_{H} > p_{H}^{*} \\ q_{1} = 0, & q_{2} = H & \text{if } p_{H} < p_{H}^{*} \end{cases}$$
Opportunity Price of Hydrogen:
$$p_{H}^{*} = \frac{(C_{H1} - C_{F1} - p_{F1}) - (C_{H2} - C_{F2} - p_{F2})}{\eta_{H1} - \eta_{H2}E_{2}/E_{1}} + C_{F1} + p_{F1} - \frac{1}{\eta_{H1}}C_{H1}$$

Numerical illustration of a valley with a bus fleet and an ammonia production plant

The economic Welfare of an End-user with a low-carbon alternative for hydrogen:

$$W_{Di} = \Pi_i - (p_{CO2}E_i + C_{Fi} + p_{Fi})(N_i - (q_{Hi} + q_{Ai})) - \frac{1}{\eta_{Hi}}(C_{Hi} + p_H)q_{Hi} - \frac{1}{\eta_{Ai}}(C_{Ai} + p_A)q_{Ai}$$

- η_{Ai} Efficiency of low-carbon alternative based technology
- C_{Ai} Cost of deployment of alternative low-carbon based technology (\notin /MWh)
- P_A Price of low-carbon alternative (\in /MWh)
- q_{Ai} Quantity of low-carbon alternative uptake (MWh)

$$\begin{cases} WtP = (p_{CO2}E_i + C_{Fi} + p_{Fi}) - \frac{1}{\eta_{Hi}}C_{Hi} & \text{if } p_{CO2} < \Delta_A \\ WtP = \frac{1}{\eta_{Ai}}(C_{Ai} + p_A) - \frac{1}{\eta_{Hi}}C_{Hi} & \text{if } p_{CO2} > \Delta_A \end{cases}$$

Abatement cost of alternative
low-carbon technology: Δ_A

 Δ_A

$$=\frac{(C_{Ai} + p_A) - (C_{Fi} + p_{Fi})}{\eta_{Ai}E_i}$$

Numerical illustration of a valley with a bus fleet and an ammonia production plant

The end user is indifferent to using fossil or alternative low-carbon technology

$$W_{Di} = \Pi_i - (p_{CO2}E_i + C_{Fi} + p_{Fi})(N_i - q_i) - \frac{1}{\eta_{Hi}}(C_{Hi} + p_H)q_i$$

Cost of deployment of low-carbon technology could be subjected to **learning**:

$$C_{Hi} = e^{-(r+\gamma_i)T} C_{Hi0}$$

r Discount Rate

γ_i Learning Rate

T Time

 T^*

 C_{Hi0} Cost of deployment of H2 technology at T=0

A Market equilibrium in the Hydrogen valley

- Which supply-demand market equilibrium in hydrogen valleys ?
- Which market failures in hydrogen valley and what are their implications ?

Scope: Hydrogen Valleys: Stepping Stones in the Development of a Global Hydrogen Ecosystem

Three different archetypes for Hydrogen Valleys (Roland Berger, 2021)

Smaller-scale local mobility-centred Hydrogen Valleys (typically 1–10+ MW of local electrolyser capacity

Typically combine the decarbonization efforts of various regional mobility fleets (hydrogen fuel cell trucks, buses, trains, etc.).

Project examples:

- Zero Emission Valley Auvergne-Rhône-Alpes (FR)
- Hydrogen Valley South Tyrol (IT)
- Hydrospider project (CH).

Archetype 2

Medium-scale Hydrogen Valleys focusing on industrial decarbonisation (typically 10-300+ MW of local electrolyser capacity):

One or more large industrial consumers serving as "anchor load". Around this anchor load, mobility off-takers and their hydrogen assets are added benefitting from lower hydrogen supply costs.

Project examples:

- Hydrogen Holland 1 (NL)
- Basque Hydrogen Corridor (ES)
- HyNet North-West England (UK)

Large-scale and ultimately export-oriented Hydrogen Valleys (typically 250-1,000+ MW of local electrolyser capacity):

Focusing on low-cost production of clean hydrogen for local off-take, but ultimately mainly regional and international export to connect supply and demand centers on a global scale.

Project examples:

- NEOM (KSA)
- Aqua Ventus (DE)
- H2 Magallanes (CL)
- Pilbara Hydrogen Hub (AU)

A simplified hydrogen valley model

Standard Market Equilibrium in the hydrogen valley

- Supply curve in H2 valley
 - Trade-off between selling renewable electricity to the grid and producing renewable hydrogen
- Demand-curve
 - Mobility have high willingness-to-pay but low demand level
 - Industry have low willingness-to-pay but high demand level
- Long-term equilibrium:
 - Reduced electrolysis cost: lower supply curve
 - Increasing social cost of carbon: higher WtP
 - Decreasing cost of hydrogen technologies: higher WtP
 - ▲: Decreasing cost of alternative low-carbon technologies in mobility: lower WtP for H2

Economies of scale and its implication (work in progress)

scale for large-scale electrolysers (electricity price 100€/MWh)

Sources of economies of scale:

• The CAPEX of large-scale electrolysers represents a fixed cost in a H2 valley

Consequences on the market equilibrium

- The producer only agrees to produce hydrogen if the quantity is large enough to amortize the CAPEX (otherwise it sells its electricity directly).
- Without intervention, an equilibrium might not be found, which means no hydrogen production in the valley.
- ⇒ Ramsey-Boiteux problem (1956) applied to a local monopoly

Ramsey-Boiteux pricing:

- Both sectors are priced at their own WtP level
- Profit made on mobility sector = Loss made on the industry sector ?

Hydrogen-end uses and public policy instruments

What are the implications of insufficient carbon taxation?

Which public policy instruments to reach the socially optimal allocation of hydrogen?

Insufficient carbon taxation leads to inefficient H2 allocation

Private equilibrium without climate policy

With a social cost of carbon lower than the opportunity cost of abatement:

- Insufficient hydrogen production
- Limited welfare loss

With a social cost of carbon higher than the opportunity cost of abatement:

- Non-meritorious hydrogen allocation
- Significant welfare loss

First-best policy:

- A Pigouvian tax on emissions is efficient to decentralize the first-best scenario
- However, a uniform carbon tax across sector is unlikely to emerge at the European level
- For example: high taxation on diesel (mobility) and low taxation on natural gas (industry)

First and second-best policy ranking (work in progress)

Comparing second-best policy:

- Subsidy to hydrogen production
- Subsidy to one demand sector (mobility or industry)
- · Joint subsidy to demand and production sector

Preliminary results:

- Subsidy to hydrogen production can create a windfall effect (unnecessary mobility support)
- Direct subsidy to a hydrogen option in a sector with a lowcarbon alternative may distort the competition between lowcarbon technologies
- The best policy depends on the position of the social cost of carbon in comparison to the opportunity cost of abatement

Objective:

- For each instrument, determine the welfare-maximizing policy level, and indicate the quantity of hydrogen produced, its price and allocation
- · Extend this analysis in the context of discriminatory pricing

Conclusion and next steps

- Preliminary conclusion

- We propose a methodology to define an optimal "Merit-Order for End-Uses of Hydrogen" based on the notion of MACC considering additional dimensions: the constraint on hydrogen supply in short-term, competition among different zero and low-carbon technologies, the interactions between sectors as well as the time perspective.
- This approach is applied to define the optimal allocation of renewable hydrogen in a hydrogen valley (or hydrogen hub). Some market failures (economies of scale, insufficient carbon taxation) are identified, and public policies to address them are derived.

- Next steps and extensions:

- Calibration of the model, based on data from local hydrogen valleys
- Introducing hydrogen storage and distribution in the model
- Introducing the option of hydrogen import in the hydrogen valley, as well as hydrogen export (archetype 3)
- Introducing other criteria to define a a merit-order for end-uses of renewable hydrogen (TRL, safety issues)

Thank you so much for your attention!