

Understanding the similarities and differences in decarbonization scenarios derived from different building stock models

Ece Özer, Lukas Kranzl, Andreas Müller, Behnam Zakeri, Robin Hasse, Sirin Alibas, Theofano Fotiou 24-27 July 2023, Milan 18th IAEE European Conference

- I. Motivation and Background
- II. Objective
- III. Methodology
 - a. Scenario Design
 - b. Demand Side Building Stock Models
- IV. Results
- V. Conclusion
- VI. Next Steps

- 1/3 of total final energy consumption (global) [1]
 - 40% of total global greenhouse gas emissions [2]
- Scenario modelling is crucial for understanding the dynamics of building sector and planning of decarbonization pathways.
- Comparing different model results is important to understand models- specific characteristics.
- Model comparisons are often difficult to perform, if scenario specifications did not take place in a comparable manner.
- Scenario specification and the model-run task has been carried out within the scope of the *European Climate and Energy Modeling Forum (ECEMF)* project.
- ECEMF|H2020→ to establish a European forum to bring together energy and climate researchers and policymakers and deal with how to achieve climate neutrality. [3]

EUROPEAN CLIMATE + ENERGY MODELLING FORUM

nion's

- [1] World Energy Outlook 2021, International Energy Agency (IEA)
- [2] https://ourworldindata.org/emissions-by-sector

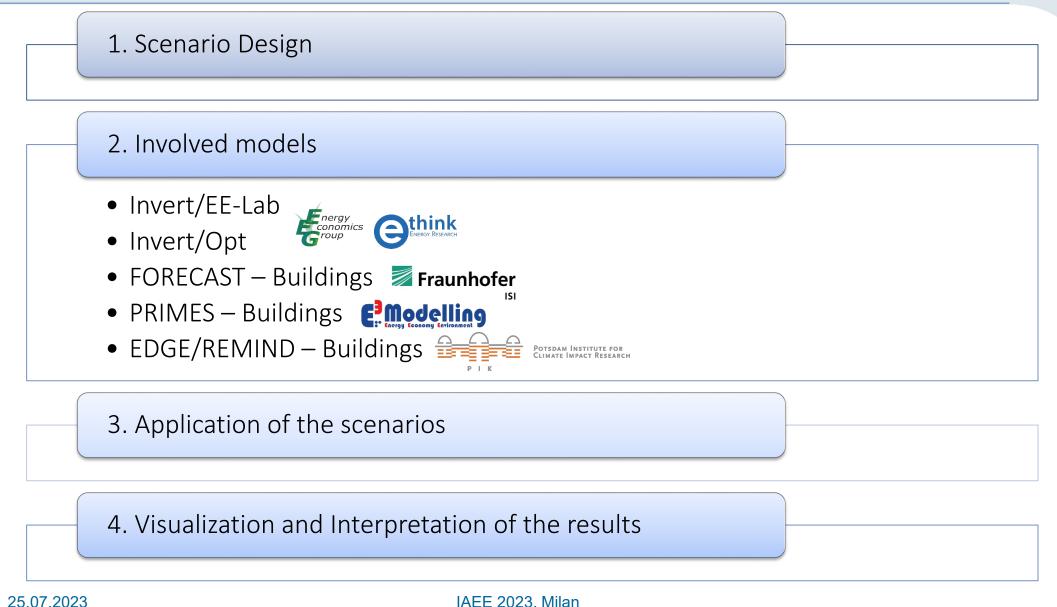
Buildings

[3] European Climate and Energy Modeling Forum (ECEMF) : https://www.ecemf.eu/

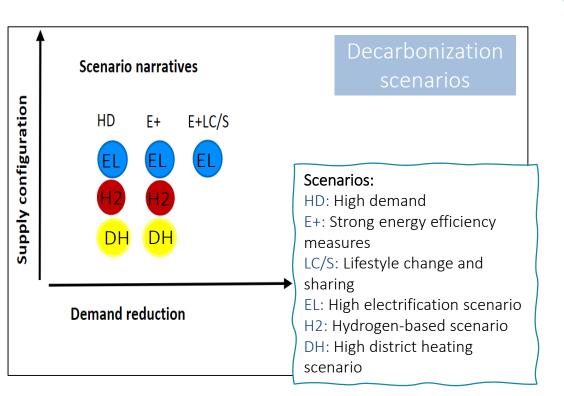
- 1. to analyze the impact of different building stock model narratives on;
 - I. different demand reduction level,
 - II. different supply configurations.
- 2. to address the differences/deviations among the included building stock models.

Key messages:

- 1. Heat pumps and district heating are the predominant heating systems for decarbonizing buildings.
- 2. H2 and e-fuels are not economically viable in any scenario.
- 3. Building renovation and improved envelopes are crucial for a decarbonized building stock.



EUROPEAN Climate+energy Modelling Forum



METHODOLOGY II

1) Scenario Design

- . 3 scenarios are focusing on *supply technology*.
 - i. High electrification (EL),
 - ii. High e-fuels (H2),
 - iii. High district heating (DH).
- 11. 2 levels of *demand reduction focusing on efficiency measures*:
 - i. Efficiency high,
 - ii. Efficiency moderate.
- III. 1 scenario *lifestyle and behavioral change* added.

- 1) High Electrification | Efficiency Moderate
- 2) High Electrification | Efficiency High
- 3) High Electrification | Lifestyle and Behavioral Change
- 4) High H2/e-fuels | Efficiency Moderate
- 5) High H2/e-fuels | Efficiency High
- 6) High District Heating | Efficiency Moderate
- 7) High District Heating | Efficiency High

METHODOLOGY III

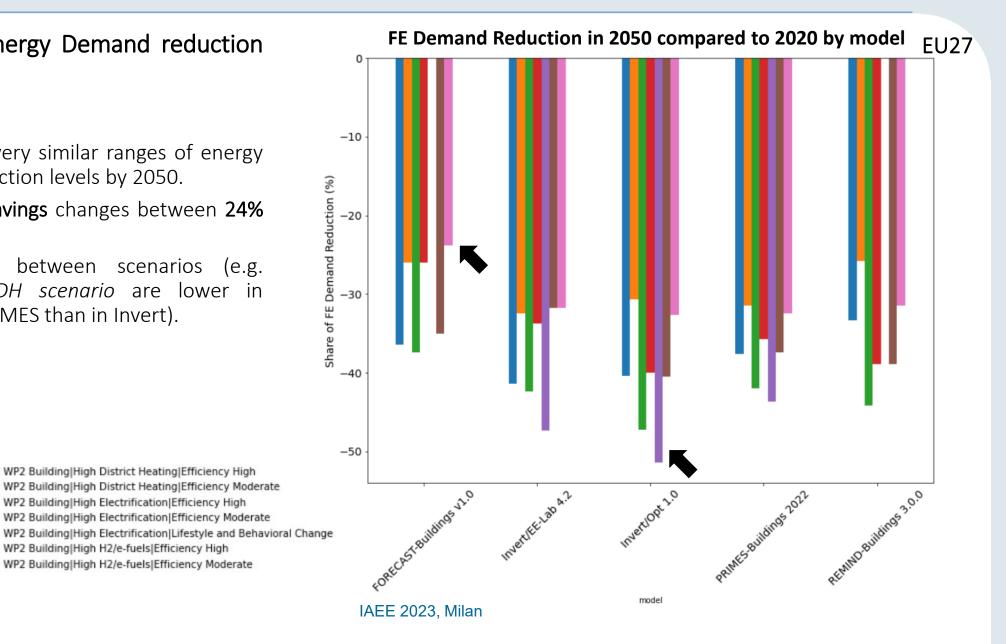
Model Name	Approach	Spatial Coverage	Temporal Coverage	Technological Coverage		
	Techno-socio-economic bottom-up simulation model, logit approach, building owners represented as agents with distinct decision-making parameters.	EU27	2020-2050, 5-year intervals	Space heating/cooling, domestic hot water. Electrical appliances are aggregated with lighting, and cooking.		
Invert/Opt	An economic bottom-up optimization model (deriving overall cost-optimum mix of renovation measures and technology choice for a certain target year).	EU27	2019 - 2050	Space heating/cooling, domestic hot water. Electrical appliances are aggregated with lighting, and cooking.		
FORECAST - Buildings	A bottom-up simulation model that considers the dynamics of technologies and socioeconomic drivers for the future energy demand of the buildings sector.	EU27	2010-2050, annual	Space heating/cooling, domestic hot water, electrical appliances, lighting, cooking.		
PRIMES - Buildings	A hybrid economic-engineering optimization model founded on microeconomic theory, built to represent behaviours of consumers, with embedded engineering constraints.	EU27	2005-2050,5-year	Space heating/cooling, domestic hot water, electrical appliances, lighting, cooking.		
EDGE/REMIND - Buildings	A top-down simulation model is driven by projected population, GDP, and climate data. Buildings are embedded as a sector in a global IAM.	EU27	intervals until 2060, 10	Space heating/cooling, domestic hot water, electrical appliances, lighting, cooking.		

METHODOLOGY III

Model Name	Approach	Spatial Coverage	Temporal Coverage	Technological Coverage
Invert/EE-Lab	Techno-socio-economic bottom-up simulation model, logit approach, building owners represented as agents with distinct decision-making parameters.	EU27	2020-2050, 5-year intervals	Space heating/cooling, domestic hot water. Electrical appliances are aggregated with lighting, and cooking.
Invert/Opt	An economic bottom-up optimization model (deriving overall cost-optimum mix of renovation measures and technology choice for a certain target year).	EU27	2019 - 2050	Space heating/cooling, domestic hot water. Electrical appliances are aggregated with lighting, and cooking.
FORECAST - Buildings	A bottom-up simulation model that considers the dynamics of technologies and socioeconomic drivers for the future energy demand of the buildings sector.	EU27	2010-2050, annual	Space heating/cooling, domestic hot water, electrical appliances, lighting, cooking.
	A hybrid economic-engineering optimization model founded on microeconomic theory, built to represent behaviours of consumers, with embedded engineering constraints.	EU27	2005-2050,5-year	Space heating/cooling, domestic hot water, electrical appliances, lighting, cooking.
EDGE/REMIND - Buildings	A top-down simulation model is driven by projected population, GDP, and climate data. Buildings are embedded as a sector in a global IAM.	EU27	intervals until 2060, 10	Space heating/cooling, domestic hot water, electrical appliances, lighting, cooking.

METHODOLOGY III

Model Name	Approach	Spatial Coverage	Temporal Coverage	Technological Coverage		
Invert/EE-Lab	Techno-socio-economic bottom-up simulation model, logit approach, building owners represented as agents with distinct decision-making parameters.	EU27	2020-2050, 5-year intervals	Space heating/cooling, domestic hot water. Electrical appliances are aggregated with lighting, and cooking.		
Invert/Opt	An economic bottom-up optimization model (deriving overall cost-optimum mix of renovation measures and technology choice for a certain target year).		2019 - 2050	Space heating/cooling, domestic hot water. Electrical appliances are aggregated with lighting, and cooking.		
FORECAST - Buildings	A bottom-up simulation model that considers the dynamics of technologies and socioeconomic drivers for the future energy demand of the buildings sector.	EU27	2010-2050, annual	Space heating/cooling, domestic hot water, electrical appliances, lighting, cooking.		
	A hybrid economic-engineering optimization model founded on microeconomic theory, built to represent behaviours of consumers, with embedded engineering constraints.	EU27	2005-2050,5-year intervals	Space heating/cooling, domestic hot water, electrical appliances, lighting, cooking.		
	A top-down simulation model is driven by projected population, GDP, and climate data. Buildings are embedded as a sector in a global IAM.	EU27		Space heating/cooling, domestic hot water, electrical appliances, lighting, cooking.		


Share of Final Energy Demand reduction in 2050

- All models show very similar ranges of energy consumption reduction levels by 2050.
- Share of energy savings changes between 24% to 51%.
- Differences exist between scenarios (e.g. savings in the DH scenario are lower in FORECAST and PRIMES than in Invert).

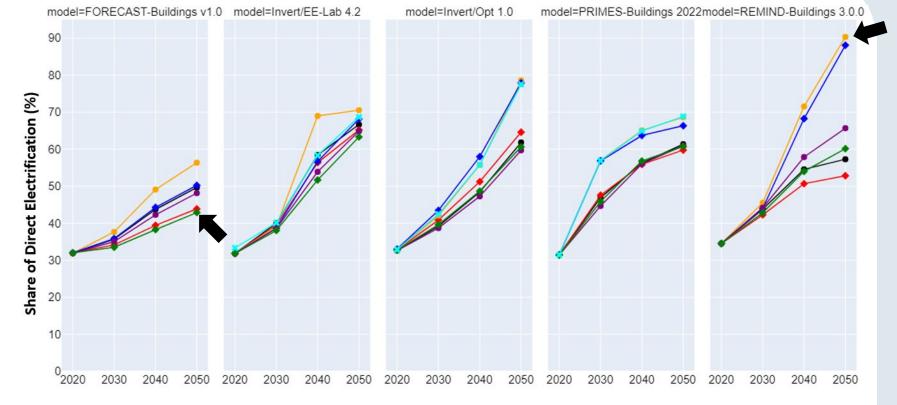
WP2 Building|High District Heating|Efficiency High

WP2 Building|High Electrification|Efficiency High WP2 Building High Electrification Efficiency Moderate

WP2 Building|High H2/e-fuels|Efficiency High WP2 Building|High H2/e-fuels|Efficiency Moderate

10

25.07.2023



Share of direct electrification

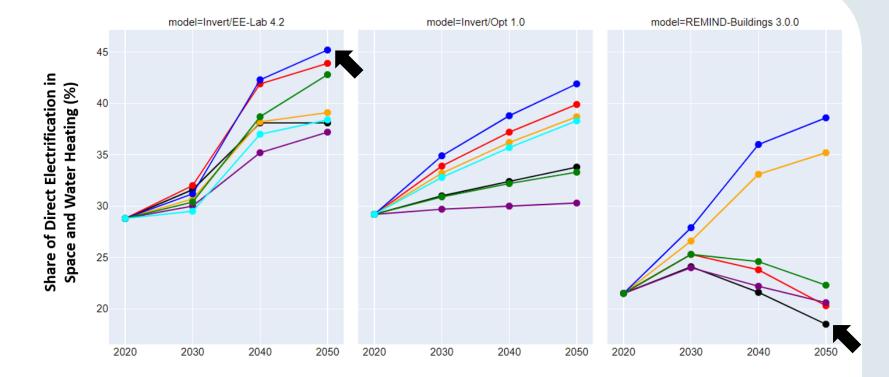
- •Share of direct electrification changes from 43% to 90%.
- Highest shares of electrification via heat pumps were achieved in REMIND.

EU27

scenario,

- ----- WP2 Building|High Electrification|Efficiency High, High
- WP2 Building|High Electrification|Efficiency Moderate, Moderate
- WP2 Building|High H2/e-fuels|Efficiency High, High
- -*- WP2 Building|High Electrification|Lifestyle and Behavioral Change, Lifestyle

11



Share of direct electrification in Space and Water Heating

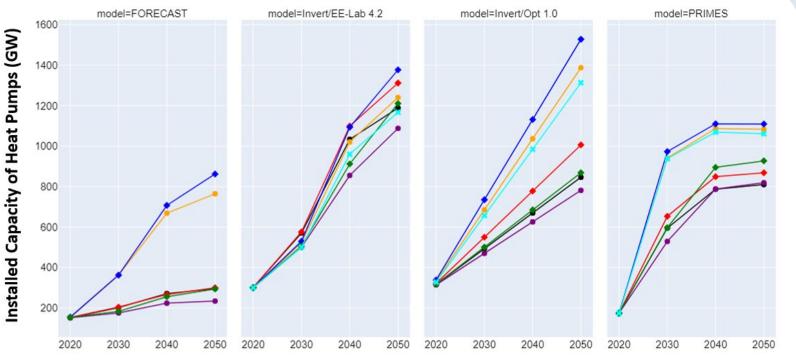
- Share of direct electrification in Space and Water Heating is changing from 18.5% to 45.2%.
- Highest shares of electrification via heat pumps in Space and Water Heating were achieved in Invert/EE-Lab.

scenario, carbon_level

EU27

- → WP2 Building|High H2/e-fuels|Efficiency High, High

12



Installed capacity of heat pumps

- Most models and scenarios indicate a 3-5fold increase in the installed capacity of heat pumps, reaching **700-1500 GW**.
- FORECAST-Buildings projects a minor increase in heat pump capacity for H2/e-fuels and High District Heating scenarios, estimating it to be around 234-300 GW.
- •The highest installed capacity of heat pumps is observed in the Invert/Opt scenario with the High Electrification | Efficiency Moderate scenario.

scenario, carbon_level

EU27

- WP2 Building|High District Heating|Efficiency High, High

- WP2 Building|High H2/e-fuels|Efficiency High, High
- -*- WP2 Building|High Electrification|Lifestyle and Behavioral Change, Lifestyle

13

model=FORECAST-Buildings v1.0 model=Invert/EE-Lab 4.2 model=Invert/Opt 1.0 model=PRIMES-Buildings 2022model=REMIND-Buildings 3.0.0 40 District Heating(%) achieved in 30 20 ę Share

0 2020 2030 2040 2050 2050 2020 2030 2040 2050 2020 2030 2020 2030 2040 2050 2020 2030 2040 2040 2050

scenario.

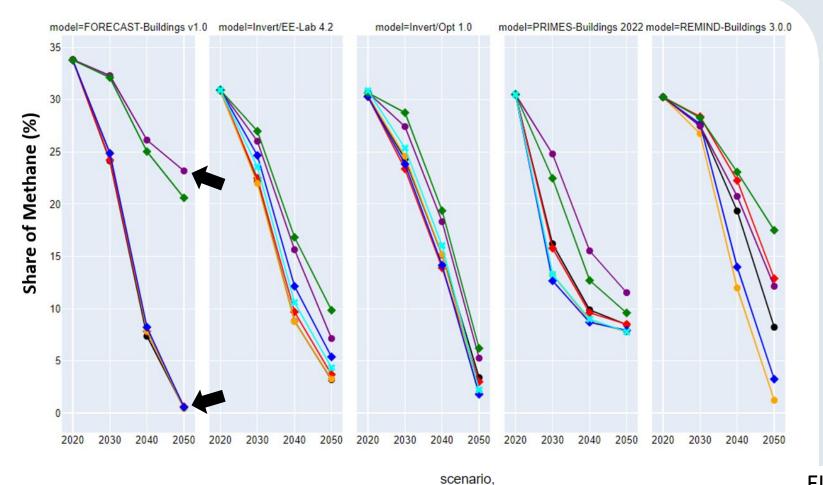
EU27

- WP2 Building|High District Heating|Efficiency Moderate, Moderate

- WP2 Building|High H2/e-fuels|Efficiency High, High
- WP2 Building|High H2/e-fuels|Efficiency Moderate, Moderate
- -*- WP2 Building|High Electrification|Lifestyle and Behavioral Change, Lifestyle

- Share of district heating
- Share of district heating varies from 8% to 38%.
- Highest shares of DH FORECAST and REMIND.
- FORECAST-Buildings utilizes more district heating compared to other models due to the *lower* investment and operation costs of these heating systems.
- PRIMES shows the lowest variation (and growth) in district heating across all scenarios.

14



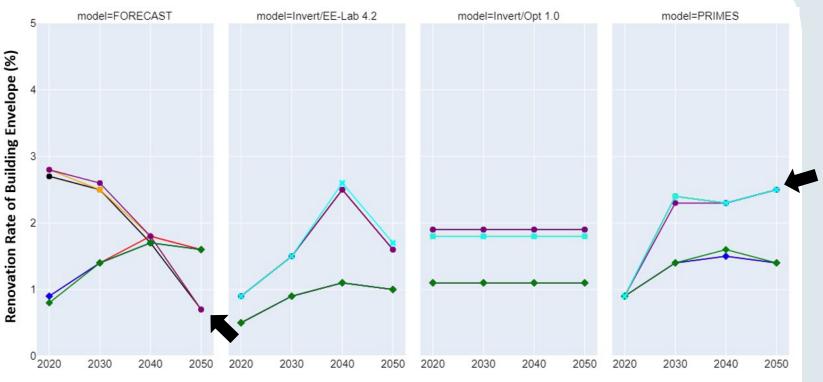
Share of methane

- •Share of methane (fossil and biogases) varies from 0% to 23%.
- •All models and scenarios lead to a strongly reduced share of gases, even in the H2-scenarios.
- In 2020, FORECAST-Buildings shows a higher methane share, which can be explained by the variations in the base year between the heating module and appliances module of the model.

EU27

- WP2 Building|High District Heating|Efficiency High, High

- WP2 Building|High H2/e-fuels|Efficiency High, High
- -*- WP2 Building|High Electrification|Lifestyle and Behavioral Change, Lifestyle



Renovation rate of the building envelope

- Renovation rate → refurbished floor area (m2, annual) divided by the total available floor area, ranging from 0.7% to 2.8%.
- The highest renovation rate is observed in PRIMES-Buildings with the High Electrification | Lifestyle and Behavioral Change scenario.
- Renovation rate and the decrease in final energy demand are not directly proportional, warranting further analysis of renovation depths in each model.

scenario, carbon_level

EU27

- WP2 Building|High District Heating|Efficiency High, High

- → WP2 Building|High H2/e-fuels|Efficiency Moderate, Moderate
- -*- WP2 Building|High Electrification|Lifestyle and Behavioral Change, Lifestyle

16

- ✓ Substantial enhancement of building renovation and related improvement of the building envelope is key for a *decarbonized building stock*.
- ✓ Heat pumps play a crucial role in the supply mix of all scenarios.
- ✓ H2 and e-fuels do not turn out to be an efficient and economically viable solution in any of the models, even not in the dedicated H2/e-fuels scenarios.
- ✓ **District heating** is important for the *decarbonization process*, but models show different intensities of district heating expansion.

- MS-level analysis
- Understanding the reasons for the deviations between models
 - Modeling approach
 - Scenario settings

25.07.2023