Economic Value of Nuclear Power in Future Energy Systems

Required subsidy in various scenarios regarding future renewable generation, electricity demand and fossil fuel generation

Arjen Veenstra, Xinyu Li and Machiel Mulder

Center for Energy Business and Economics Research University of Groningen, Netherlands

July 25, 2023 18th European Conference, International Association for Energy Economics Milan, Italy

Method	Sensitivity analysis	Conclusions
0 000000000 00000 0		

Outline

1 Introduction

- Background
- Research questions
- 2 Method of research
 - Power market model
 - Scenarios
 - Policy variants
- 3 Results
 - Capture price
 - Capacity factor
 - Required subsidy
 - Electricity system with zero emissions

4 Sensitivity analysis

- Construction costs
- Discount factor
- Gas prices, carbon prices
- 5 Conclusions

Introduction	Method	Sensitivity analysis	Conclusions
• 0 0	0 000000000 00000 0		

Introduction

Introduction ○ ● ○	Method 0 000000000 00000 0	Results 00 0 0 0 000	Sensitivity analysis 0 0 0 00	Conclusions 000
Background				

Background

To reduce carbon emissions, we can

- **1** reduce the use of energy
- 2 increase use of electricity
- **3** replace fossil generated electricity by non-carbon energy such as renewables and nuclear

Governments are promoting renewable power but are increasingly considering nuclear as mitigation measure. The Dutch government has asked market parties to build two nuclear power plants

Introduction ○ ●	Method o oooooooooo ooooo o	Results oo o o ooo	Conclusions 000
Research questions			

Research questions

In an electricity system with high shares of renewable generation

- **I** To what extent does nuclear power require subsidy in comparison to other non-carbon sources?
- 2 How effective is nuclear power in providing flexibility to zero carbon electricity systems in comparison to hydrogen production, storage and usage?

Method	Sensitivity analysis	Conclusions
000000000 00000 0		

Method

Method	Sensitivity analysis	Conclusions
0 •000000000 00000 0		

Power market model

Short-term partial equilibrium model Electricity:

- Supply: produce electricity when price is higher than marginal cost
 - Gas-fired power plants
 - Nuclear power plants
 - Solar PV, onshore wind, offshore wind
 - International trader
 - Storage operator (in scenario with zero-carbon system)
- Demand: aggregated
- Result: electricity prices, production

Green certificates

Method		Sensitivity analysis	Conclusions
	00		000
00000000			
	000		

Model overview

Schematic model overview

Method	Sensitivity analysis	Conclusions
0 00●000000 00000 0		

Mathematical model: nuclear power plant (formula)

Optimization problem:

$$\max \sum_{h=1}^{8760} (p_h^E - c^N) \cdot q_h^{E,N},$$

subject to (ramping constraints)

$$\begin{split} & \mathcal{K}^{N} \cdot O^{N,\min} \leq q_{1}^{E,N} \leq \mathcal{K}^{N} \cdot O^{N,\max}, \\ & \max\left\{O^{N,\min}, q_{h-1}^{E,N} / \mathcal{K}^{N} - \mathcal{R}^{N}\right\} \cdot \mathcal{K}^{N} \leq q_{h}^{E,N}, \ h = 2, \dots, 8760, \\ & \min\left\{O^{N,\max}, q_{h-1}^{E,N} / \mathcal{K}^{N} + \mathcal{R}^{N}\right\} \cdot \mathcal{K}^{N} \geq q_{h}^{E,N}, \ h = 2, \dots, 8760, \\ & q_{h}^{E,N} \leq \mathcal{K}^{N} \cdot \mathcal{A}_{h}^{N} \ h = 1, \dots, 8760, \end{split}$$

Hourly generation $q_h^{E,N}$, installed capacity K^N , utilisation rate O, ramp rate R^N , availability factor A_h^N

Method		Sensitivity analysis	Conclusions
	00		000
00000000			
		00	
	000		

Mathematical model: nuclear power plant (parameter values)

Optimization problem:

$$\max \sum_{h=1}^{8760} (p_h^E - 12.24) \cdot q_h^{E,N},$$

subject to

$$\begin{split} & \mathcal{K}^{N} \cdot 0.25 \leq q_{1}^{E,N} \leq \mathcal{K}^{N} \cdot 1, \\ & \max\left\{0.25, q_{h-1}^{E,N} / \mathcal{K}^{N} - 0.31\right\} \cdot \mathcal{K}^{N} \leq q_{h}^{E,N}, \ h = 2, \dots, 8760, \\ & \min\left\{1, q_{h-1}^{E,N} / \mathcal{K}^{N} + 0.31\right\} \cdot \mathcal{K}^{N} \geq q_{h}^{E,N}, \ h = 2, \dots, 8760, \\ & q_{h}^{E,N} \leq \mathcal{K}^{N} \cdot 0/1 \ h = 1, \dots, 8760, \end{split}$$

Method		Sensitivity analysis	Conclusions
	00		000
000000000			
	000		

Model output, hourly

Hourly variability of production and load within a year (model results for calibrated Dutch market in 2019)

	Method ○ ○○○○○ ○○○○○ ○	Results 00 0 0 0 000	Conclusions 000
Power market model			
Required s	subsidy		

Required subsidy is amount needed to make Net Present Value (NPV) zero

- Revenues (sales of electricity and green certificates)
- Costs, (operational costs, capital costs)
- Operational revenues and costs are calculated through the model, capital costs are exenously determined

Method		Sensitivity analysis	Conclusions
	00		000
000000000			
	000		

Assumptions, costs

Cost	Unit	Nuclear	Te Solar	chnology Wind (on- shore)	Wind (off- shore)
Construction cost	€/kW installed	4230	750*	1125*	2160^{*}
Fixed O&M cost	€/kW installed	90	32.4	55.8	157.5
Variable O&M cost	€/MWh produced	1.35	-	-	-
Fuel cost	€/MWh produced	9.00	-	-	-
Cost of waste	€/MWh produced	2.07	-	-	-
Decommissioning cost	% of construction cost	15^{*}	5^*	5^{*}	5^{*}

Notes:

All values come from OECD-NEA (2019), page 94, except the values indicated with an *, which come from IEA-NEA (2020). We assume an exchange rate of 0.90 Euro/USD.

The assumed values for the renewable energy technologies are relatively low compared to what is stated by Frauenhofer ISE (2021). That report states that the fixed costs per MW installed capacity are between 530 and 1600 for solar PV, between 1400 and 2000 for onshore wind, and between 3000 and 4000 for offshore wind. The costs of Solar PV very much depend on the type of installation: large utility scale PV installations are about 50 percent less expensive than small rooftop installations.

Assumed values regarding costs of various electricity generation technologies

Method		Sensitivity analysis	Conclusions
	00		000
000000000			
	000		

Assumptions, other

-

		Technology		
Parameter	Unit	Nuclear	Solar	Wind (on- and offshore)
WACC	%	7	7	7
Lifetime	Years	60	25	25
Construction duration	Years	7	1	1

Note: All values come from OECD-NEA (2019). In Section 5 we analyse the sensitivity of our results for alternative values for these parameters.

Assumptions regarding lifetime, construction duration and discount factor (WACC) of various electricity generation technologies

Method		Sensitivity analysis	Conclusions
	00		000
00000000			
	000		

Assumptions, storage

Cost	Unit	Electrolyzer	Technology Hydrogen storage	Fuel cell
Construction cost	€/kW installed	1000	0.0	1000
Notes: All values come from Li and Mulder (2021)				

		Technology		
Parameter	Unit	Electrolyzer	Hydrogen storage	Fuel cell
WACC	%	7	7	7
Lifetime	Years	25	25	25
Construction duration	Years	1	1	1

Notes:

All values come from Li and Mulder (2021).

Assumptions regarding lifetime, construction duration and discount factor (WACC) of $\ensuremath{\mathsf{FES}}$

Method	Sensitivity analysis	Conclusions
0 000000000 00000 0		

Current situation

Method		Sensitivity analysis	Conclusions
0	00		
000000000			

Calibration of model on Dutch electricity market

Electricity price duration curves in the model and the Dutch electricity market in 2019 17/37

Method	Sensitivity analysis	Conclusions
0 000000000 00000 0		

Scenarios: regarding renewable capacities and electricity demand

Renewable capacities

High Renewables: renewable target in 2050

Electricity demand

Medium Increase, High Increase: electrification

Gas-fired power plants:

- capacity is adjusted accordingly to remain the same return rate per unit of installed capacity.
- sensitivity: scenario without gas-fired power plants

Method		Sensitivity analysis	Conclusions
	00		000
00000000			
00000			
	000		

High Renewables, Medium Increase Demand

Installed capacities High Renewables- Medium Increase Demand-scenario

Method		Sensitivity analysis	Conclusions
	00		000
00000000			
00000			
	000		

High Renewables, High Increase Demand

Installed capacities High Renewables- High Increase Demand-scenario

Method	Sensitivity analysis	Conclusions

Policy variants

Definition of policy variants

Base

- More nuclear: +1000 MW
- More solar
- More onshore wind
- More offshore wind

Method	Results	Sensitivity analysis	Conclusions
0 000000000 00000 0	•• • •		

Results

Method	Results	Sensitivity analysis	Conclusions
	00		000
00000000			
	000		

Scenarios, electricity prices

Duration curves of electricity price in considered scenarios

Method	Results	Sensitivity analysis	Conclusions
000000000	•		
00000			
	000		

Capture price

Capture price

Capture price per technology for different scenarios/policy variants (Euro/MWh) 24/37

Method	Results	Sensitivity analysis	Conclusions
0 000000000 00000 0			

Capacity factor

Capacity factor

Capacity factor per technology for different scenarios/policy variants (Euro/MWh) 25/37

Method	Results	Sensitivity analysis	Conclusions
	00		000
00000000			
	•		
	000		

Required subsidy

Required subsidy

Required subsidy per technology for different scenarios/policy variants (Euro/MWh) 26/37

Method	Results	Sensitivity analysis	Conclusions
	00		000
00000000			
	000		

Electricity system with zero emissions

Electricity system with zero carbon emissions

Future: no gas-fired power plants

Two options to deal with need of flexibility

- More nuclear
- Storage
 - Arbitrager: buy when $p^e < p$, sell when $p^e > \overline{p}$.
 - Hydrogen: Fuel cell, Electrolyzer, Storage (FES)

Method	Results	Sensitivity analysis	Conclusions
	00		000
00000000			
		00	
	000		

Electricity system with zero emissions

Price duration curves

Duration curves of electricity prices, *High Renewables- High Increase Demand-scenario*, different policy variants

Method	Results	Sensitivity analysis	Conclusions
	00		000
00000000			
		00	
	000		

Electricity system with zero emissions

Required subsidy

Required subsidy of nuclear energy and FES, *High Renewables- High Increase Demand-scenario*, different policy variants

Method		Sensitivity analysis	Conclusions
0		•	
000000			
	0 000		

Sensitivity analysis

Method		Sensitivity analysis	Conclusions
	00		000
00000000		•	
	000		

Construction costs

Construction costs

Sensitivity of required subsidy per MWh produced w.r.t. construction cost of nuclear power plant, *High Renewables- High Increase Demand*

Method		Sensitivity analysis	Conclusions
	00		000
00000000			
		•	
	000		

Discount factor

Discount factor (WACC)

Sensitivity of required subsidy per MWh produced w.r.t. discount factor, *High Renewables- High Increase Demand*

Method		Sensitivity analysis	Conclusions
	00		000
00000000			
		•0	
	000		

Gas prices, carbon prices

Gas prices

Scenario	Setting	Nuclear	Solar	Onshore wind	Offshore wind
Baseline	$p^G p^G imes 5$	31.32 0	84.10 49.21	9.81 0	50.87 0
High Renewables-	$p^G p^G imes 5$	61.58	163.93	66.57	102.66
Medium Increase Demand		18.66	149.94	52.09	90.44
High Renewables-	$p^G_{p^G \times 5}$	45.93	126.47	45.95	82.33
High Increase Demand		0	98.33	20.40	57.16

Notes:

 p_{-}^{G} : gas prices as in 2019.

 $p^G \times 5$: gas prices of 2019 multiplied by a factor 5.

Required subsidy per technology w.r.t. various gas prices, for different scenarios (in Euro/MWh) $\,$

Baseline: average gas price is about 14 Euro/MWh

Method		Sensitivity analysis	Conclusions
	00		000
00000000			
		00	
	000		

Gas prices, carbon prices

Carbon prices

Scenario	Setting	Nuclear	Solar	Onshore wind	Offshore wind
	c^C	31.32	84.10	9.81	50.87
Baseline	$c^C \times 5$	0	62.99	0	20.18
	$c^C imes 10$	0	52.32	0	0
High Renewables	c^C	61.58	163.93	66.57	102.66
Medium Increase Demand	$c^C \times 5$	43.36	156.04	59.28	96.34
Medium increase Demand	$c^C \times 10$	25.92	151.4	53.73	91.9
High Ponowables	c^C	45.93	126.47	45.95	82.33
High Increase Demand	$c^C \times 5$	0	112.24	34.31	70.55
	$c^C imes 10$	0	100.79	23.92	60.66

Notes:

c^C: carbon prices as in 2019.

 $c^{C} \times 5$: carbon prices of 2019 multiplied by a factor 5. $c^{C} \times 10$: carbon prices of 2019 multiplied by a factor 10.

Required subsidy per technology w.r.t. various carbon prices, for different scenarios (in Euro/MWh)

Baseline: average carbon price is about 25 euro/ton

Method		Sensitivity analysis	Conclusions
0			000
00000		ŏ	
	ŏoo		

Conclusions

Method		Conclusions
0	00	000
000000000000000000000000000000000000000		

Conclusions

- In current power system, building an nuclear power plant requires subsidies
- In a scenario with already high amounts of renewables, building an nuclear power plant requires less subsidies than building even more renewables (because of impact on capture prices)
- 3 Nuclear power plants benefit more from high gas and carbon prices than renewables
- It is more efficient to build a nuclear power plant to provide flexibility than to use hydrogen for that purpose in zero-carbon electricity system

Method	Sensitivity analysis	Conclusions
000000000		000
00000		

Contact details

Prof. Machiel Mulder Link Professor of Energy Economics Director Centre for Energy Business and Economics Research Link Department of Economics and Business University of Groningen P.O. Box 800 9700 AV Groningen E: machiel.mulder@rug.nl Policy paper: Link