The Impact of the Weather on Electric Vehicle Fleet Demand

Daniel Mehlig*, Nathan Johnson, Iain Staffell Centre for Environmental Policy, Imperial College London

*d.mehlig18@imperial.ac.uk

@danielmehlig, @Dr_NJohnson, @iain_staffell

- 1. Evidence for how EV energy consumption is impacted by the weather
- 2. Two methods to model this relationship
- 3. Case study: German fleet
- 4. Case study: UK fleet

Weather has an increasing impact on electricity supply and demand

- ➤ Staffell & Pfenninger (2018)
 - > Electricity supply and demand are becoming increasingly weather-dependent
 - ➤ Heat electrification could see **peak demand increase by 20% in 15 years**
 - > Additional weather driven loads may worsen this issue, increasing cost or risk security of supply

There is only limited data of how weather impacts EV demand

- Anecdotal evidence
- ➤ NAF (2020) Twenty popular EVs tested in Norwegian winter conditions
 - > EVs on average lose **20 percent** of their range in colder climate
 - > EVs charge more slowly in cold temperatures
- **1.** Yuksel & Michalek (2015) Effects of Regional Temperature on Electric Vehicle Efficiency, Range, and Emissions in the United States; and 7 additional sources.
- 2. National Grid & Element Energy (2019) EV charging data; 8 million UK charging events in 2017.

EV demand can be modelled as a function of the weather

- 1. Fleet demand as a function of ambient temperature
 - Yuksel & Michalek (2015) Effects of Regional Temperature on Electric Vehicle Efficiency, Range, and Emissions in the United States; and 7 additional sources.
- 2. Fleet demand as a function of multiple weather variables
 - National Grid & Element Energy (2019) EV charging data; 8 million UK charging events in 2017.

1. Fleet demand as a function of ambient temperature

We standardise these relationships of EV energy consumption and temperature using **changepoint regression**

Below 15 °C or above 25 °C energy consumption consistently increases

These relationships with temperature are often **not included in studies of national-scale charging demand**

1. Fleet demand as a function of ambient temperature

We standardise these relationships of EV energy consumption and temperature using **changepoint regression**.

We use the www.demand.ninja model to generate national-scale estimates of EV charging demand covering many historical weather years.

2. Fleet demand as a function of multiple weather variables

We use the National Grid data to correlate fleet-wide EV consumption to other weather variables:

	Estimate	Std. Error	t value	Pr(> t)
Intercept	45.270	0.595	76.050	(***) < 2e-16
Temperature	-0.513	0.076	-6.769	(***) 5.51e-11
Solar Irradiance	-0.014	0.002	0.795	(***) < 2e-16
Wind Speed	0.040	0.051	-0.772	0.441
Humidity	-0.116	0.151	-9.322	0.427
Weekend	-9.727	0.189	-51.470	(***) < 2 e-16

Residual standard error: 1.622 on 348 degrees of freedom;

Multiple R-squared: 0.9258, adjusted R-squared: 0.9248, F-statistic: 8686.6 on 5 and 348 DF, p-value: <2.2e-16.

2. Fleet demand as a function of multiple weather variables

- We use the National Grid data to correlate fleet-wide EV consumption to other weather variables:
 - Intercept: Baseline demand of 45.3 MW
 - Weekends: On weekends demand drops by 21.4%
 - > Temperature: Demand increases by 1.1% for every 1 °C drop
 - ➤ Solar Irradiance: Demand increases by 3.1% for every 100 W/m²* drop

*(annual UK range is ±300 W/m²)

EV demand can be modelled as a function of the weather

- 1. Fleet demand as a function of ambient temperature -> German case study
- 2. Fleet demand as a function of multiple weather variables -> UK case study
- We use the www.demand.ninja model to generate national-scale estimates of EV charging demand covering many historical weather years.

Case study: German fleet

Case study: German fleet

Imperial College London

Case study: UK Fleet

Case study: UK Fleet

Charging demand was 36% higher on the day of peak electricity demand than the annual-mean.

Diapositiva 14

MDN0

lain could you confirm if it was 36% higher than the annual mean for EVs or National demand? Mehlig, Daniel N; 2023-07-21T11:12:33.939

Case studies summary

- > EV demand varied seasonally, on average increasing by 12% in winter and decreasing by 6% in summer for Germany, compared to the annual average.
- > During highest day of peak demand, **EV demand increased by 25% and 36%** compared to the annual average for Germany and the UK, respectively.
- Correlation between EV demand and national demand, suggesting demand from EVs will contribute to peak conditions.

Conclusions

- ➤ Evidence EV energy consumption is impacted by the weather, therefore future models should include this relationship.
- > EV fleet demand will follow seasonal, weekly, and daily, weather patterns that will need to be balanced with corresponding supply.
- > Demand from future EV fleets is likely to contribute to peak conditions.
- > Likely to increase system cost and if not addressed may risk security of supply.

Next Steps

- ➤ Global modelling apply these methods to different regions.
- > EV Ninja online webtool to generate EV charging profiles for different locations.

Thank you

Daniel Mehlig*, Nathan Johnson, Iain Staffell Centre for Environmental Policy, Imperial College London

*d.mehlig18@imperial.ac.uk

🏏 @danielmehlig, @Dr_NJohnson, @iain_staffell