

AIT AUSTRIAN INSTITUTE OF TECHNOLOGY

A framework for multiple participation in Energy Communities Ivan Mariuzzo, Bernadette Fina, Stefan Stroemer

IAEE European Conference, Milan, 25 July 2023

RENEWABLE ENERGY COMMUNITIES

- RECs are legal entities grouping end-users of different sectors sharing renewable energy produced locally under geographical constraints, as same low-voltage or mediumvoltage feeder
- Virtual aggregation: each participant retains the rights to choose for energy supply conditions and/or leave in case of dissatisfaction.
- RECs can operate **community owned units** and properly allocate benefits amongst the participants

RENEWABLE ENERGY COMMUNITIES

- Energy Communities are entitled to decide internal purchase/selling prices* in order to be more competitive with the energy provider, if :
 - Purchase price \rightarrow lower than provider's
 - Selling price \rightarrow higher than provider's
- Austria is about to introduce multiple participation in ECs within its own national legislation, starting by 2024:
 - «Split» of the participants and units energy exchanges within more than one EC at the same time
 - Multiple sources o which/from which energy can be sold/purchased by participants and units

MULTIPLE ENERGY COMMUNITIES

5

SETTLEMENT PATTERNS

- 5 SFHs* with 2 prosumers
- 3 and 4 kWp PV for prosumers

X

X against participation at a Local Energy Community

pro participation at a Local Energy Communi

City EC(2):

- 3 buildings with 5 MABHs** each
- 27 and 28 kWp PV

Mixed EC(3):

- 1 building with 5 MABHs and 28 kWp PV
- 5 SFHs with 2 prosumer
- 3 and 4 kWp PV for prosumers

*SFH = Single Family Household - 3000-7000 kWh/year. New participant is assumed to belong to this category

**MABH = Multi-Apartment Building Households - 1000-4000 kWh/year

Source: B. Fina, H. Auer, W. Friedl, Profitability of PV sharing in energy communities: Use cases for different settlement patterns, Energy 189 (2019) 116148

METHODOLOGY

The proposed methodology is a formulated as a Mixed Integer Linear Programming (MILP) optimisation problem implemented in **JuMP** and using **Gurobi** as a solver.

The **Decision variables** are the following:

- > ECs' participants power flows $P_{h,t}^{EP+/-}$, $P_{h,t}^{EC+/-}$
- > New participant's power flows $P_{0,t}^{EP+/-}$, $P_{0,t}^{EC_r+/-}$, x_t
- > New participant's ECs allocation x_r^- , x_r^+ , x_r
- BESS charge/discharge

The **objective** is to minimize the energy Total Costs (TC) of both all ECs and new participant:

 $TC^{EP} = \sum_{t \in T} \sum_{h \in H} \rho_{EP}^{+} P_{h,t}^{EP+} \Delta t + \sum_{t \in T} \sum_{h \in H} \rho_{EP}^{-} P_{h,t}^{EP-} \Delta t + \sum_{t \in T} \sum_{r \in R} \rho_{EP}^{+} P_{r,t}^{S} \Delta t$ $HHs purchasing \qquad HHs selling \qquad Units selling \\ to supplier \qquad to supplier \qquad to supplier$ $TC^{EC} = \sum_{t \in T} \sum_{r \in R} \rho_{r}^{+} (P_{0,t}^{EC_{r}+} + \sum_{h \in H_{r}} P_{h,t}^{EC_{r}+}) \Delta t + \sum_{t \in T} \sum_{r \in R} \rho_{r}^{-} (P_{0,t}^{EC_{r}-} + \sum_{h \in H_{r}} P_{h,t}^{EC_{r}-}) \Delta t + \sum_{t \in T} \sum_{r \in R} \rho_{r}^{+} P_{r,t}^{C} \Delta t$ $HHs purchasing from \qquad HHs selling to ECs \qquad Units selling to ECs$

 $\min TC = TC^{EP} + TC^{EC}$

A constraint* is added to not worsen initial ECs' energy exchange with the supplier:

$$\sum_{t \in T} \sum_{h \in H_r} P_{h,t}^{EP-} \Delta t + \sum_{t \in T} \sum_{h \in H_r} P_{h,t}^{EP+} \Delta t + \sum_{t \in T} P_{r,t}^S \Delta t \le E_r^+ + E_r^-$$

*Other constraints that have been used include ECs power balance, BESS management system, etc.

$$\begin{split} &\sum_{r \in R} P_{0,t}^{EC_r + / -} + P_{0,t}^{EP + / -} = P_{0,t,M}^{+ / -}, \quad \forall t \in T \\ & 0 \leq P_{0,t}^{EP + / -} \leq P_{0,t,M}^{+ / -}, \quad \forall t \in T \\ & x_r P_{0,t,m}^{+ / -} \leq P_{0,t}^{EC_r + / -} \leq x_r P_{0,t,M}^{+ / -}, \quad \forall t \in T, \quad r \in R \\ & \sum_{r \in R} P_{r,t}^{EC_r} + P_t^{EP_r} \leq x_t P_{t,max}^{+}, \quad \forall t \in T \\ & \sum_{r \in R} P_{r,t}^{EC_r} + P_t^{EP_r} \leq (1 - x_t) P_{t,max}^{-}, \quad \forall t \in T \\ & P_{h,t}^{EC_r + / -} + P_{h,t,M}^{EP_r / -} = P_{h,t,M}^{+ / -}, \quad \forall t \in T, \quad r \in R, \quad h \in H_r \\ & 0 \leq P_{h,t}^{EP_r / -} \leq P_{h,t,M}^{+ / -}, \quad \forall t \in T, \quad r \in R, \quad h \in H_r \\ & 0 \leq P_{h,t}^{EC_r + / -} \leq P_{h,t,M}^{+ / -}, \quad \forall t \in T, \quad r \in R, \quad h \in H_r \end{split}$$

RESEARCH QUESTIONS AND ANALYSIS

Investigate the economic viability* of the following scenarios:

- 1. Case 1: single EC allocation $\rightarrow 0 \leq \sum_{r \in R} x_r \leq 1$
- 2. Case 2: multiple ECs allocation $\rightarrow 0 \leq \sum_{r \in R} x_r \leq 3$
- 3. Case 3: $\rightarrow 0 \leq \sum_{r \in R} x_r \leq 3$ and $\beta_{r,m}^{+/-} \geq 5\%$
- 4. Case 4: $\rightarrow 0 \leq \sum_{r \in R} x_r \leq 3$ and $\beta_{r,m}^{+/-} \geq 10\%$
- 5. Case 5: $\rightarrow 0 \leq \sum_{r \in R} x_r \leq 3$ and $\beta_{r,m}^{+/-} \geq 20\%$

6. Case 6:
$$\rightarrow 0 \leq \sum_{r \in R} x_r \leq 3$$
 and $\beta_{r,m}^{+/-} \geq 30\%$

Analysis are repeated changing:

- 1. The type of the new participant (consumer/prosumer with 4 kWp PV)
- 2. The local generation** introducing further stand-alone PV and community storage

^{*}Supplier's cost: purchased at 0.64 €/kWh (with levies, grid charges, 20% VAT and 6% user's fees) and assumed to be sold at 0.25 €/kWh

^{*}ECs' cost: purchased at 0.38 €/kWh, including grid charges, and assumed to be sold at 0.35 €/kWh

^{**} Additional 20 kWp + 12 kWh BESS in rural EC, 33 kWh BESS in city EC, and 20 kWp + 12 kWh BESS in mixed EC

RESULTS: CONSUMER, BASELINE*

	C1	C2	С3	C4	C5	C 6
TC[€/y]	26201.5	26186.8	26186.8	26186.8	26186.8	26201.5
β^{-}_{rural}	0	0.15	0.13	0.13	0	0
β_{city}^{-}	0.49	0.23	0.22	0.21	0.30	0.49
β^{-}_{mixed}	0	0.12	0.14	0.16	0.20	0
β_{EP}^{-}	0.51	0.50	0.50	0.50	0.50	0.51
$\sum_{r \in R} x_r$	1	3	3	3	2	1

Mariuzzo Ivan, Bernadette Fina, Stefan Stroemer, Marco Raugi, «Economic Assessment of Multiple Energy Community Participation", Applied Energy, Elsevier, 2023, to be submitted soon

RESULTS: PROSUMER, BASELINE

	C1	C2	С3	C4	C5	C6
TC[€/y]	24715.3	24669.5	24670.2	24682.4	24719.5	24719.5
β^+_{rural}	0.32	0.31	0.32	0.32	0.33	0.33
β_{city}^+	0	0.02	0	0	0	0
β^+_{mixed}	0	0.03	0	0	0	0
β_{EP}^+	0.68	0.64	0.68	0.68	0.67	0.67
β^{rural}	0.01	0	0	0	0	0
β_{city}^{-}	0	0.03	0.05	0.10	0	0
β^{mixed}	0	0.03	0.05	0	0	0
β_{EP}^{-}	0.99	0.94	0.90	0.90	1	1
$\sum_{r\in R} x_r$	1	3	3	2	1	1

13

RESULTS: PROSUMER, ASSETS

	C1	C2	СЗ	C4	C5	C6
TC[€/y]	6729.7	6707.4	6715.2	6733.8	6790.3	6790.3
β^+_{rural}	0	0.01	0	0	0	0
β_{city}^+	0	0.01	0.05	0	0	0
β^+_{mixed}	0.01	0	0	0	0	0
β_{EP}^+	0.99	0.98	0.95	1	1	1
β^{-}_{rural}	0	0.03	0	0	0	0
β^{-}_{city}	0	0.07	0.05	0	0	0
β^{mixed}	0.11	0.04	0.05	0.11	0	0
β_{EP}^{-}	0.89	0.86	0.90	0.89	1	1
$\sum_{r\in R} x_r$	1	3	2	1	0	0

OUTCOMES

Results

- **Consumer** dependency from provider is reduced up to 50%, but multiple participation only provides benefits as increased flexibility in energy supply.
- Prosumer will sell more energy towards provider (>60%) and energy-demanding EC1. MEC incremental savings are up to 6.3% and mainly due to higher flexibility while purchasing from more ECs at lower cost.
- In more self-sufficient communities, **prosumer** revenues will be lower and most of the energy is sold to the provider.
- **Participation coefficients** can be used to reduce number of ECs and avoid small new participant's contribution, but could slightly worsen ECs' units and end-users' savings.
- Results are strongly dependent on energy costs and each ECs participants and units' compositions

THANK YOU FOR THE ATTENTION!

Ivan Mariuzzo: <u>ivan.mariuzzo@phd.unipi.it</u> Bernadette Fina: <u>bernadette.fina@ait.ac.at</u> Stefan Stroemer: <u>stefan.stroemer@ait.ac.at</u>

#