Integrating demand-supply decarbonization efforts in the residential sector: a modeling assessment for France

Célia Escribe^{1,2} Lucas Vivier^{1,3} Gaëtan Giraudet^{1,3} Philippe Quirion¹ ¹CIRED-CNRS, 45 bis, Avenue de La Belle Gabrielle, 94736, Nogent sur Marne, France ²CMAP, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, Palaiseau, France ³ENPC, Ecole des Ponts ParisTech, France

Motivation	Related literature	Methods	Results	Conclusion	References
000000	000	00000	0000	000	

Outline

1. Motivation

- 2. Related literature
- 3. Methods
- 4. Results
- 5. Conclusion

Motivation	Related literature	Methods		Conclusion	References
00000	000	00000	0000	000	

Building sector needs to be decarbonized

- Building sector: second largest contributor to greenhouse gas emissions in high-income countries.
 - High stakes in decarbonizing residential sector !
- National and European strategies: strong emphasis on insulation and heat pumps adoption.

Motivation	Related literature	Methods		Conclusion	References
00000	000	00000	0000	000	

Building sector needs to be decarbonized

- Building sector: second largest contributor to greenhouse gas emissions in high-income countries.
 - High stakes in decarbonizing residential sector !
- National and European strategies: strong emphasis on insulation and heat pumps adoption.

Motivation: what is the optimal decarbonization strategy in the residential sector ?

Motivation	Related literature	Methods		Conclusion	References
00000	000	00000	0000	000	

How to decarbonize building sector ?

3 main options to decarbonization:

Decentralized decision-making under market failures

Building sector is characterized by **decentralized** energy efficiency investment decisions by **heterogenous** agents.

Market failures: investments are diverted away from the socially optimal decisions.

Decentralized decision-making under market failures

Building sector is characterized by **decentralized** energy efficiency investment decisions by **heterogenous** agents.

Market failures: investments are diverted away from the socially optimal decisions.

Energy market failures

- Environmental externality
- Price divergence from energy marginal cost

Decentralized decision-making under market failures

Building sector is characterized by **decentralized** energy efficiency investment decisions by **heterogenous** agents.

Market failures: investments are diverted away from the socially optimal decisions.

Energy market failures

- Environmental externality
- Price divergence from energy marginal cost

Energy-efficient durables failures

- Landlord-tenant dilemma
- Public good issues
- Credit constraints
- Myopic estimation of energy prices
- Health benefits not included in investment decisions

Motivation	Related literature	Methods		Conclusion	References
000000	000	00000	0000	000	

A need for public intervention

Environmental externality: Traditional logic of **pigouvian taxation**

Not always a politically viable option !

A need for public intervention

- **Environmental externality**: Traditional logic of **pigouvian taxation**
 - Not always a politically viable option !
- Additional market failures in the residential sector would require perfectly targeted subsidies for each individual agent.

A need for public intervention

- **Environmental externality**: Traditional logic of **pigouvian taxation**
 - Not always a politically viable option !
- Additional market failures in the residential sector would require perfectly targeted subsidies for each individual agent.

 \implies First-best cannot be implemented, and **second-best policy designs** need to be explored.

Motivation	Related literature	Methods	Results	Conclusion	References
00000●	000	00000	0000	000	

> Decarbonizing building sector requires a **comprehensive demand-supply approach**.

Motivation	Related literature	Methods	Results	Conclusion	References
00000	000	00000	0000	000	

- > Decarbonizing building sector requires a **comprehensive demand-supply approach**.
- Investment decisions in the residential sector are made by heterogeneous individuals in a world plagued by market failures.

Motivation	Related literature	Methods	Results	Conclusion	References
00000●	000	00000	0000	000	

- > Decarbonizing building sector requires a **comprehensive demand-supply approach**.
- Investment decisions in the residential sector are made by heterogeneous individuals in a world plagued by market failures.
- First-best policies may not be available to the regulator.

Motivation	Related literature	Methods	Results	Conclusion	References
00000●	000	00000	0000	000	

- > Decarbonizing building sector requires a **comprehensive demand-supply approach**.
- Investment decisions in the residential sector are made by heterogeneous individuals in a world plagued by market failures.
- First-best policies may not be available to the regulator.

What is the optimal trade-off between the 3 decarbonization options for the residential sector ?

Motivation	Related literature	Methods	Results	Conclusion	References
00000●	000	00000	0000	000	

- > Decarbonizing building sector requires a **comprehensive demand-supply approach**.
- Investment decisions in the residential sector are made by heterogeneous individuals in a world plagued by market failures.
- First-best policies may not be available to the regulator.

What is the optimal trade-off between the 3 decarbonization options for the residential sector ?

How should energy efficiency subsidies be optimally determined to decarbonize the residential sector ?

Motivation	Related literature	Methods	Results	Conclusion	References
000000	●00	00000	0000	000	

Outline

1. Motivation

2. Related literature

3. Methods

4. Results

5. Conclusion

Motivation	Related literature	Methods	Results	Conclusion	References
000000	○●○	00000	0000	000	

Theoretical work on optimal energy efficiency policy instruments (Chan & Globus-Harris, 2023; Allcott *et al.*, 2014; Allcott *et al.*, 2015)

Limitations: parsimonious representative agent models

Motivation	Related literature	Methods	Results	Conclusion	References
000000	0●0	00000	0000	000	

Theoretical work on optimal energy efficiency policy instruments (Chan & Globus-Harris, 2023; Allcott *et al.*, 2014; Allcott *et al.*, 2015)

- Limitations: parsimonious representative agent models
- Our contribution: significantly more detailed data-driven approach with robust numerical applications.

Motivation	Related literature	Methods	Results	Conclusion	References
000000	○●○	00000	0000	000	

Theoretical work on optimal energy efficiency policy instruments (Chan & Globus-Harris, 2023; Allcott *et al.*, 2014; Allcott *et al.*, 2015)

- Limitations: parsimonious representative agent models
- Our contribution: significantly more detailed data-driven approach with robust numerical applications.

Dynamic building stock models (Camarasa et al., 2022; Giraudet et al., 2021)

Limitations: exogenous assumptions regarding energy supply

Motivation	Related literature	Methods	Results	Conclusion	References
000000	0●0	00000	0000	000	

Theoretical work on optimal energy efficiency policy instruments (Chan & Globus-Harris, 2023; Allcott *et al.*, 2014; Allcott *et al.*, 2015)

- Limitations: parsimonious representative agent models
- Our contribution: significantly more detailed data-driven approach with robust numerical applications.

Dynamic building stock models (Camarasa et al., 2022; Giraudet et al., 2021)

- Limitations: exogenous assumptions regarding energy supply
- Our contributions:
 - Explicitly account for the interaction between demand and supply.
 - Endogenize optimal choice for policy instrument.

	Related literature	Methods		Conclusion	References
000000	000	00000	0000	000	

Energy system models

- Brown et al., 2018; Zeyen et al., 2021; Mandel et al., 2023
- Limitations: exogenous assumptions on demand, focus on first-best solutions by disregarding the decentralized investment decisions.

Related literature	Methods	Conclusion	References
000			

Energy system models

- Brown et al., 2018; Zeyen et al., 2021; Mandel et al., 2023
- Limitations: exogenous assumptions on demand, focus on first-best solutions by disregarding the decentralized investment decisions.

Our contributions

Provide a framework to quantify variations in total costs between first-best setting and second-best settings.

	Motivation 000000	Related literature 000	Methods ●0000	Results 0000	Conclusion 000	References
--	----------------------	---------------------------	------------------	-----------------	-------------------	------------

Outline

- 1. Motivation
- 2. Related literature
- 3. Methods
- 4. Results
- 5. Conclusion

Building stock model: Res-IRF

Dynamic microsimulation model of the energy performance of the building stock and space heating consumption in France.

- Extensive description of heterogeneity of the dwelling stock
- Investment decisions (insulation and heating system switch) result from discrete choice models.

Figure: Res-IRF model

	Related literature	Methods		Conclusion	References
000000	000	00000	0000	000	

Energy system model: EOLES

Optimization of **investment and operation** by minimizing total costs while satisfying energy demand.

- Hourly temporal resolution
- Vector-coupling: electricity, methane, hydrogen
- Economic parameters and demand projections: RTE, 2022

Figure: EOLES model. Source: Shirizadeh & Quirion, 2021

Integrated demand-supply framework

Social planner **minimizes total costs**:

- energy system costs
- heater and insulation investment costs
- operational costs
- health costs

Complex optimization problem: solved through **bayesian optimization** framework.

Motivation	Related literature	Methods	Results	Conclusion	References
000000	000	0000●	0000	000	

We simulate an ad valorem subsidy targeting heat pumps in all scenarios, while we consider **different ad valorem subsidy designs for insulation.**

We simulate an ad valorem subsidy targeting heat pumps in all scenarios, while we consider **different ad valorem subsidy designs for insulation.**

First-best scenario

Insulation Technical Optimum: subsidies target the most cost-effective insulation option in the building stock.

We simulate an ad valorem subsidy targeting heat pumps in all scenarios, while we consider **different ad valorem subsidy designs for insulation**.

First-best scenario

Insulation Technical Optimum: subsidies target the most cost-effective insulation option in the building stock.

Second-best scenarios

► Uniform: all insulation measures are eligible for the rebate.

We simulate an ad valorem subsidy targeting heat pumps in all scenarios, while we consider **different ad valorem subsidy designs for insulation.**

First-best scenario

Insulation Technical Optimum: subsidies target the most cost-effective insulation option in the building stock.

Second-best scenarios

- ► Uniform: all insulation measures are eligible for the rebate.
- Deep renovation: only deep insulation measures (i.e., an upgrade of at least two energy performance certificates levels) are eligible for the rebate.

000000 0000 0000 000	Motivation 000000	Related literature 000	Methods 00000	Results ●000	Conclusion 000	References
-----------------------------	----------------------	---------------------------	------------------	-----------------	-------------------	------------

Outline

- 1. Motivation
- 2. Related literature
- 3. Methods
- 4. Results

5. Conclusion

Related literature	Methods	Results	Conclusion	References
		0000		

The first-best scenario

- Energy efficiency reduces by 38 % the residential space heating consumption in 2050 compared to 2020
 - ▶ 25 % coming from investments in insulation
 - ▶ 13 % coming from investments in heat pumps

Related literature	Methods	Results	Conclusion	References
		0000		

The first-best scenario

- Energy efficiency reduces by 38 % the residential space heating consumption in 2050 compared to 2020
 - ▶ 25 % coming from investments in insulation
 - ▶ 13 % coming from investments in heat pumps
- Energy efficiency investment are prioritized in the least energy-efficient buildings.

MotivationRelated literatureMethodsResultsConclusionReferences000000000000000000000000000

The first-best scenario

- Energy efficiency reduces by 38 % the residential space heating consumption in 2050 compared to 2020
 - ▶ 25 % coming from investments in insulation
 - 13 % coming from investments in heat pumps
- Energy efficiency investment are prioritized in the least energy-efficient buildings.
- Important investment in energy mix decarbonization:
 - ▶ 84 % of electricity production generated with renewable sources

	Related literature	Methods	Results	Conclusion	References
000000	000	00000	0000	000	

Second-best subsidy designs

Figure: Comparison of subsidy designs. a) Difference of total annualized system costs over period 2025-2050 compared to the uniform subsidy scenario. b) Savings from insulation and heat pumps in 2050.

Comparison with single sector modelling framework

- Exogenous assumptions on carbon content and energy costs.
- Single sector approaches yield higher total system costs.
- With assumption of higher carbon content: no solution
 - Inconsistent solution !

Figure: Difference of total system costs compared to the scenario in the coupling approach.

Motivation	Related literature	Methods	Results	Conclusion	References
000000	000	00000	0000	●00	

Outline

- 1. Motivation
- 2. Related literature
- 3. Methods
- 4. Results

5. Conclusion

Ongoing additional work:

Motivation	Related literature	Methods	Results	Conclusion	References
000000	000	00000	0000	○●○	

- Ongoing additional work:
 - Explore other subsidy designs, including additional designs for the subsidy for heater systems.

Motivation	Related literature	Methods	Results	Conclusion	References
000000	000	00000	0000	0●0	

- Ongoing additional work:
 - Explore other subsidy designs, including additional designs for the subsidy for heater systems.
 - Explore more in-depth inconsistencies of single sector approaches.

Motivation	Related literature	Methods	Results	Conclusion	References
000000	000	00000	0000	○●○	

- Ongoing additional work:
 - Explore other subsidy designs, including additional designs for the subsidy for heater systems.
 - Explore more in-depth inconsistencies of single sector approaches.
 - Explore distributional impacts.

Motivation	Related literature	Methods	Results	Conclusion	References
000000	000	00000	0000	○●○	

- Ongoing additional work:
 - Explore other subsidy designs, including additional designs for the subsidy for heater systems.
 - Explore more in-depth inconsistencies of single sector approaches.
 - Explore distributional impacts.

Thank you !

	Related literature	Methods		Conclusion	References
000000	000	00000	0000	000	

References

Motivation	Related literature	Methods	Results	Conclusion	References
000000	000	00000	0000	000	

References I

- Chan, N. W. & Globus-Harris, I. On consumer incentives for energy-efficient durables. en. Journal of Environmental Economics and Management 119, 102813 (May 2023).
- Allcott, H., Mullainathan, S. & Taubinsky, D. Energy policy with externalities and internalities. en. Journal of Public Economics 112, 72–88 (Apr. 2014).
- Allcott, H., Knittel, C. & Taubinsky, D. Tagging and Targeting of Energy Efficiency Subsidies. en. American Economic Review 105, 187–191 (May 2015).
- Camarasa, C. *et al.* A global comparison of building decarbonization scenarios by 2050 towards 1.5–2 °C targets. en. *Nature Communications* 13. Number: 1 Publisher: Nature Publishing Group, 3077 (June 2022).
- Giraudet, L.-G., Bourgeois, C. & Quirion, P. Policies for low-carbon and affordable home heating: A French outlook. en. *Energy Policy* 151, 112140 (Apr. 2021).
- Brown, T., Schlachtberger, D., Kies, A., Schramm, S. & Greiner, M. Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system. en. *Energy* 160, 720–739 (Oct. 2018).
- 7. Zeyen, E., Hagenmeyer, V. & Brown, T. Mitigating heat demand peaks in buildings in a highly renewable European energy system. en. *Energy* 231, 120784 (Sept. 2021).

Motivation	Related literature	Methods	Results	Conclusion	References
000000	000	00000	0000	000	

References II

- 8. Mandel, T. *et al.* Investigating pathways to a net-zero emissions building sector in the European Union: what role for the energy efficiency first principle? en. *Energy Efficiency* **16**, 22 (Mar. 2023).
- 9. RTE. Futurs énergétiques 2050. fr. Tech. rep. (2022).
- 10. Shirizadeh, B. & Quirion, P. Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage? en. *Energy Economics* **95**, 105004 (Mar. 2021).
- 11. Douenne, T. & Fabre, A. Yellow Vests, Pessimistic Beliefs, and Carbon Tax Aversion. en. American Economic Journal: Economic Policy 14, 81–110 (Feb. 2022).

The specific case of France

- Carbon tax not politically feasible (Douenne & Fabre, 2022)
- Unparalleled diversity of energy-efficiency subsidy programs (Giraudet et al., 2021)
 - MaPrimeRenov', income tax credit, ...

A peculiar energy system

- Low-carbon electricity, but important investment needs in the future
- High prevalence of electricity to satisfy heating demand

Integrated demand-supply framework

- Optimization under global carbon budget constraint
 - Residential + energy mix emissions
- **Myopic framework**: iterative 5-year time steps.

Conservative assumptions on energy mix

Energy savings through switch to heat pumps (%)

Figure: Comparison of savings from insulation and fuel switch across different subsidy scenarios and across two variants of the potential for renewable gas. Dashed points: scenario with decreased biogas potential.

Limitations

Focus on portfolio of two subsidies

Limitations

- Focus on portfolio of two subsidies
- Constant household energy price approach to mitigate the influence of political decisions

Summary of subsidy designs

	Unit	Uniform	Global	Proportional	Insulation Technical
			Renovation		Optimum
Investments heat pumps	Billion EUR	277	188	192	143
Subsidies heat pumps	Billion EUR	268	138	142	114
Investments insulation	Billion EUR	92	200	169	111
Subsidies insulation	Billion EUR	27	125	105	NA
Savings heater	TWh	69	47	48	37
Savings insulation	TWh	15	48	48	70
Renewable capacity	GW	246	222	228	226
Peaking plants capacity	GW	51	48	48	45
Onshore/offshore production	TWh (%)	386 (51)	386 (54)	386 (53)	386 (54)
PV production	TWh (%)	198 (26)	163 (22)	172 (24)	170 (24)
Peaking plants production	TWh (%)	18 (2.4)	15 (2.0)	15 (2.1)	13 (1.7)
Nuclear production	TWh (̀%)́	98 (13)	102 (14)	100 (14)	99 (14)
Total system costs	B EUR per year	48.5	47.3	46.4	41.2

Table: Summary of comparison of subsidy scenarios. In the table, values in billion euros are actual invested values. On the other hand, the metric Total system costs refers to the average of annualized costs over time period 2025-2050.

Célia Escribe

Bayesian Optimization

Figure: Black dots correspond to the sampling points used in the bayesian optimization framework.

Célia Escribe

Evolution of space heating consumption

Evolution of subsidies

Figure: Evolution of subsidies for the scenarios Uniform, Global Renovation and Proportional.

Evolution of heat pump stock

Figure: Development of the stock of heat pumps in all scenarios.

Célia Escribe

Evolution of housing stock

Integrating demand-supply decarbonization efforts

Hourly generation

Figure: Hourly generation for two representative weeks in winter and summer, for the *Global Renovation* scenario. The hourly demand profile is different in February and June due to the strong seasonality of heating demand.

Célia Escribe

Implicit carbon value

Year	Uniform	Global	Proportional	Insulation Technical
		Renovation		Optimum
2030	586	430	390	151
2035	520	493	486	349
2040	511	520	515	588
2045	513	600	587	715
2050	1230	1080	1154	1337

Table: Evolution of implicit carbon value in $\in/tCO2$ for each subsidy scenario.