

Multicriteria analysis for energy storage technology valuation: economic simulation of energy scenarios in islands grids

Antoine DEBILLE

Nantes University antoine.debille@gmail.com

18th IAEE European Conference, July 25th 2023

Study the system benefits of storage integration to support variable renewables in islands grids

➤Confront the impact of short term and long term storage in a high share renewable electricity system

>Investigate the use of multicriteria analysis for storage valuation

Guadeloupe Islands

- ➤ 383,559 inhabitants
- ▶ 1,661 GWh of electricity consumption
- ≻244 MW power peak
- ≻ 564 MW of installed capacity
- ≻ Dry season / Wet season

Main objectives for energy transition:

- 10% reduction in finale energy consumption by 2023 through enhanced demand side management
- ≻ 261MW of renewable installed capacity by 2023
- ≻ Energy self-sufficiency by 2030

Guadeloupe Island high voltage lines

Case study: installed capacity hypothesis

2021: electricity production and installed capacity

- > 70% of electricity production based on fossil fuel
- ► 129 MW of installed variable renewable
- ≻ 5 MW of battery storage dedicated to fast reserve

2030: electricity production and installed capacity forecast¹

- ► 100% renewable production
- ➤ 563 MW of installed variable renewable
- ➤ 253 MW of storage dedicated to support variable renewable generation and supply / demand imbalance

Methodology

Optimisation model

Inputs Constraints	Model	Outputs
--------------------	-------	---------

Methodology

Analytic Hierarchy Process

► Hierarchically structures a decision problem

Helps comparing factors of decisions regardless of their measurement metric

Analytic hierarchy process scenarios

Prefered Dimensions	Environmental	Technological	Economics
Environmental	64.0%	20.6%	15.4%
Technological	12.2%	64.8%	23.0%
Economics	12.2%	23.0%	64.8%

> Three AHP are done in a row, then aggregated

Storage hypothesis

Storage technologies

> Lithium-ion batteries for short term storage

- \geq 2.7 hours of discharge duration
- ➢ 90% roundtrip efficiency / 10 years lifespan
- Based on ADEME forecast¹

≻ CAES for long-term storage

- ➢ 6 hours of discharge duration
- > 70% roundtrip efficiency / 50 years lifespan
- Offshore technology

Storage sizing scenarios

≻ 550 MWh of storage capacity

- ≻ 50 GWh maximum curtailed energy volume
- ≻7 repartition between Li-ion batteries and CAES

Storage sizing scenarios

Underw	ater I-CAES	Lithium	thium-ion batteries		Overall storage	
Power (MW)	Capacity (MWh)	Power (MW)	Capacity (MWh)	Power (MW)	Capacity (MWh)	
0	0	196	550	196	550	
15	90	164	460	179	550	
30	180	132	370	162	550	
45	270	100	280	145	550	
60	360	68	190	128	550	
75	450	36	100	111	550	
90	540	0	0	90	540	

Main optimisation results

>100% renewable production is never reached in these scenarios (90% on average)

≻ Variable renewable represents two third of the annual production

>Volume of curtailed energy are higher when only one storage technology is installed

≻CO2 emission are lower when only CAES is installed

CAES (MW)	0	15	30	45	60	75	90
Li-ion battery (MW)	196	164	132	100	68	36	0
Non intermittent load (GWh)	441	443	447	452	458	465	477
CO2 emissions (ktCO2/)	153	150	146	143	139	136	133
Storage plant density (t)	196	7 173	14 151	21 128	28 105	35 083	42 056
Energy loss due to efficiency (%)	10%	12%	14%	16%	19%	24%	30%
Curtailed energy (GWh)	44.79	41.5	39.69	38.7	38.6	40.23	47.53
Fossil fuel plant variability (%)	9%	8%	8%	8%	8%	9%	9%
Storage investment cost (M€)	313.6	320.9	328.2	335.5	342.8	350.1	351
Storage life cycle (% of consumed cycle)	7%	5%	4%	3%	2%	2%	1%

Synthesis of optimisation results

Lephana Laboratoire d'Économie et de Management Nantes-Atlantigue

400

300

200

100

0 2 4

6

Optimisation results

Battery discharge

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

- The need for generation is during the evening and the night
- Combination of energy storage and programmable renewables is enough to satisfy the demand/supply equilibrium
- Discharge cycles of storage technologies are complementary
- ➢ Battery storage discharges more regularly than CAES, but for a less period of time

IN Nantes → Université

Optimisation results

- > Solar irradiation is lower than in the dry season
- Evening demand peak is higher than during the dry season
- Storage technologies need to overlap their cycles to respond to the demand peak
- Fossil fuel generation is needed to satisfy the supply/demand equilibrium

IN Nantes ↓ Université

Analytic hierarchy process results

11

Aggregated scores

Sizing scenarios	Environnemental	Technological	Economics	Total
0/196	0.153	0.142	0.180	0.475
15/164	0.144	0.160	0.163	0.467
30/132	0.140	0.163	0.149	0.452
45/100	0.143	0.162	0.139	0.444
60/68	0.133	0.153	0.129	0.415
75/36	0.133	0.133	0.121	0.386
90/0	0.155	0.087	0.119	0.361

- > Short term storage is preferred in general
- The technological put forth a combination of energy storage technology
- Investment cost is an important criteria

Following Guadeloupe guidelines, the second scenario (15/164) would be a better fit to benefit both renewable penetration and grid reliability

Score repartition between criteria

Concluding Statements

A combination of both long term and short term storage is preferred to support variable renewable penetration

- Curtailed energy savings requires large storage capacity along high power supply
- Storage integration will not be sufficient to reach a 100% renewable mix because of the difference between peak load and renewable availability
- Aggregation of several AHP allow better identification of key drivers for the selection of a suitable mix

Multicriteria analysis for energy storage technology valuation: economic simulation of energy scenarios in islands grids

Antoine DEBILLE

Nantes University antoine.debille@gmail.com

18th IAEE European Conference, July 25th 2023