

Assessment of regional peer-to-peer

electricity trading

Supported by:

18th IAEE European Energy Conference

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

Outline

3

Overview What is actually peer-to-peer electricity trading (P2P-ET)?

- Integration of
 - Physical Layer
 - Virtual Layer
- Potential benefits
 - Electricity bill cost savings
 - Grid flexibility
 - Active participation

Overview What is actually peer-to-peer electricity trading (P2P-ET)?

Direct way of electricity trading between consumers and prosumers, without classic intermediaries

- Classifications
 - Local P2P
 - **Regional P2P**
- Market types
 - Centralized
 - Distributed
 - Decentralized

Source: IRENA, Peer-to-Peer Electricity Trading. Adapted from Park and Young, 2017

HOCH

SCHULE

OFFEN BURG

(3B)

(3A)

Electricity trading among

neighbours within a community

.

HOCH

OFFEN BURG

SCHULE

Overview Climate neutrality in Baden Wurttemberg (BW)

New climate objective: BW climate-neutral until 2040		2019	2030	2040
 Milestones to achieve climate goals in 2040 7 x wind capacity 6 x solar capacity 2 x solid biomass capacity 400 x geothermal capacity 	Electricity Generation (TWh)	57	81	92
	Renewable Electricity Generation (TWh)	18	50	77
	GHG Emissions (Mtonnes)	72	30	0
	Electricity Import (TWh)	15	23	15

Source: own representation, adapted from: "Baden Württemberg Klimaneutral 2040 Erfoerderlicher EE-Ausbau für Klimaneutralität 2040"

Purpose of research Assessment of regional P2P

Source: Own representation, adapted from: "EWI Kurzstudie, Ökonomische Bewertung des Nutzens lokaler Koordinationsmechanismen in der Stromversorgung"

Purpose of research P2P-Scalability factors

Technological

- Battery Storage Systems
 (BSS)
- Electric vehicles (EV)
- Heat pumps
- Smart Meters (SMGW)
- Energy Management Systems (EMS)
- Sector-coupling between Residential, Tertiary and Industry sectors
- Demand Side Management (DSM)

Social Aspects

- Local / regional consciousness
- Early adopters as Target
 group for P2P
 - \circ 36 60 age range
 - High Energyknowledge
- Prosumers

Legal / Political

- Adjusted grid usage fees
- Successful Smart-Meter-Rollout
- Incentive mechanisms for investing in renewable and flexibility technologies
- Framework for secure data transmission

Market-based

- Lower P2P-Electricity price as Wholesale price
- Dynamic electricity price mechanisms
- Local P2P concepts instead of supraregional P2P concepts
- P2P market operated by professional players
- P2P market platform with smart contracts

Methodology PyPSA network multi optimization

INES Institute of Sustainable Energy Systems

Methodology Data preparation

Results Built P2P networks

- Interconnected network representing the 4 NUTS-2 BW-communities
- Each NUTS-3 region allocated respectively in its community

Results Overview

Time

Institute of Sustainable

Energy Systems

INES

- Region with high renewable generation
- Based solely on marginal costs
- Indications of positive effect. Decrease of marginal costs
- Decrease on costs correlates with solar generated electricity

12

Results Mean Locational Marginal Prices

Without P2P-ET

With P2P-ET

Outline Future work and conclussions

HOCH SCHULE OFFEN BURG

- Model not focusing on social welfare
- Final consumer price could be added
- Optimization to model grid and updating of all technologies.
- Evidence that P2P provides positive impact in grid
- Has Regional P2P a positive effect on the energy system?

