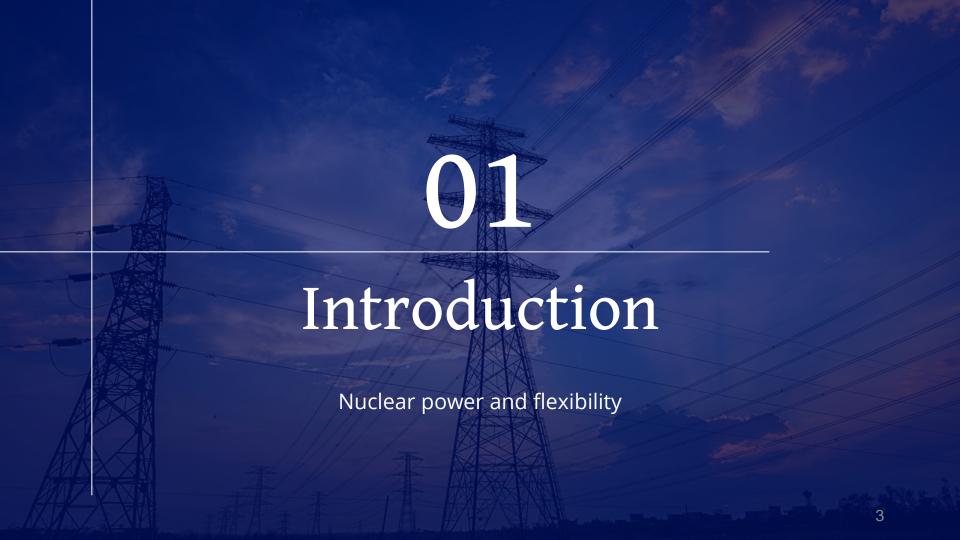
## Modelling Flexible Nuclear Generation in Low-Carbon Power Systems: A Stochastic Dual Dynamic Programming approach

Ange Blanchard
Olivier Massol

## Table of contents

Application on the French

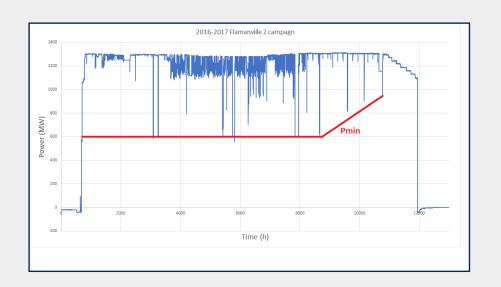

case

| 01                               | 02                               | 03                    |
|----------------------------------|----------------------------------|-----------------------|
| Introduction                     | Nuclear Power<br>Plants          | Modelling<br>approach |
| Nuclear as a flexibility source? | Specific flexibility constraints | The SDDP framework    |
| 04                               | 05                               | 06                    |
| Results                          | Insights                         | Conclusion            |

SDDP for modelling

flexibility

Further work




### Motivation

- With rising share of Renewables,
   flexibility is needed
- Nuclear is a low-carbon and dispatchable energy source... but it comes with specific technical constraints.
- Some nuclear intensive systems already use nuclear to dampen variations of supply and/or demand (France). To what extent?







#### Constraints

Nuclear is submitted to several constraints narrowing its flexibility potential, mainly Mechanical stress & Atomic considerations (Xenon effect).

Number of cycling operations limited to **200 per year**, 5 per week and 2 per day (IAEA).

Constraints are enounced as limitation on virtual **stocks** 

## Relevant literature

Previous works on Nuclear flexibility generally use MILP to model cycling operations in a deterministic framework.

- In Loisel *et al.* (2018), the number of cycles is limited and the whole European system is depicted.
- In Jenkins *et al.* (2018), ramping constraints and moments of imposed stable power are modelled.
- In Cany *et al.* (2016), different scenarios of energy production are compared and nuclear flexibility is modelled through ramping rates only.
- Lynch *et al.* (2022) accounts for the change in flexibility for each reactor induced by atomic considerations.

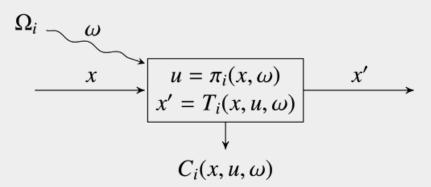
#### No stochasticity involved!



### SDDP literature

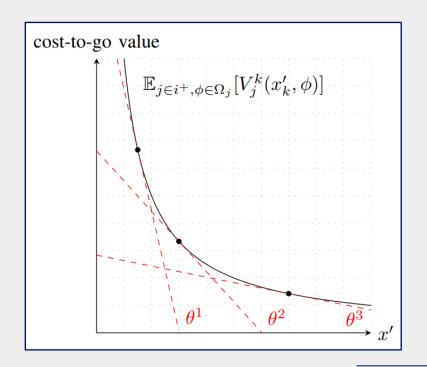
The Stochastic Dual Dynamic Programming algorithm, originally developed by Pereira & Pinto (1991) for **hydropower** schedulling purposes.

Benders cut to fasten SDP algorithms, suited for **storage management** (water, batteries... a stock of nuclear cycling operations?)


Recent application: Papavasiliou et al. (2018) for real-time storage dispatch under Renewable supply uncertainty.

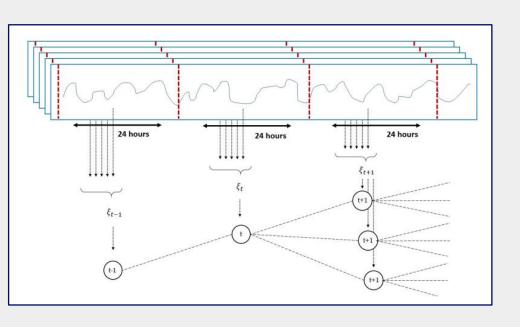


# How to use a stock optimally?


$$\underset{\pi}{\text{minimize}} \quad \mathbb{E}_{i \in \mathbb{R}^+, \omega \in \Omega_i}(V_i^{\pi}(x_0, \omega))$$

$$V_i^{\pi}(x,\omega) = \min_{x,x',u} \quad C_i(x,u,\omega) + \mathbb{E}_{j\in i^+,\phi\in\Omega_j}(V_j(x',\phi))$$
subject to 
$$x' = T_i(x,u,\omega),$$
$$u = \pi_i(x,\omega) \in U_i(x,\omega)$$




## How to use a stock optimally?

- Approximation of the costto-go term with Benders cuts
- Back & Forth iterations for building the convex enveloppe of the function
- Once training ends, we get a « policy » to be run over hundreads of simulations





# French electric system



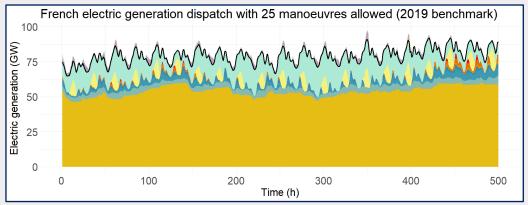
#### 365 nodes

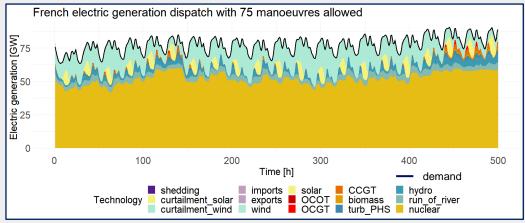
Day ahead modelling for uncertainty

#### 9 technologies

One cluster for nuclear, solar and wind exogenous

#### 8760


#### Time steps


Within a day, hourly resolution

# 5 Possible profiles

Each day, we pick out time series from a set of 5 renewables profiles

# Power dispatch





- 2035, French TSO projections
- Curtailment is clearly reduced
- With 75
   manœuvres,
   nuclear dampens
   solar variations

## Main results

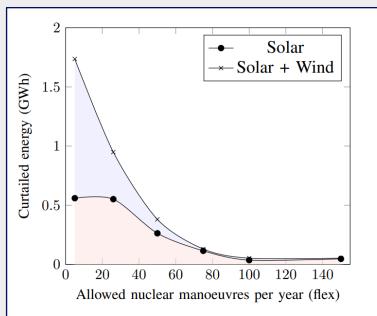
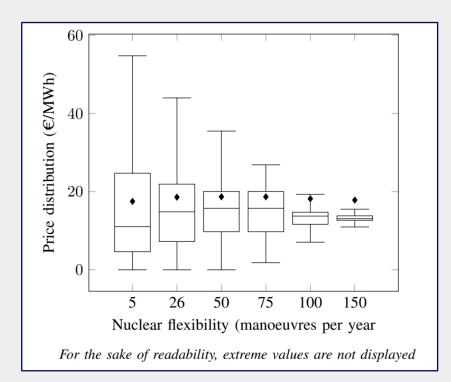




Fig. 4: Mean level of curtailed energy from VRE, over 500 simulations



## Main results

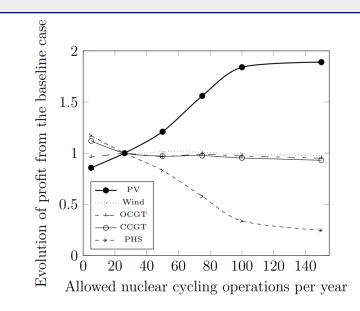
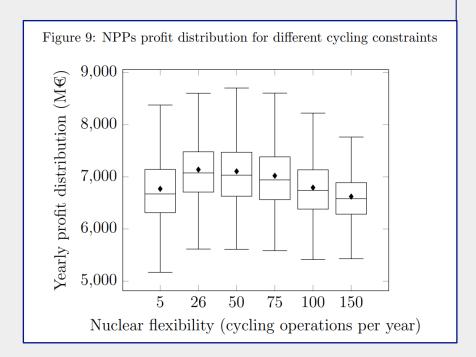




Figure 8: Mean level of profit for different technologies, over 500 simulations





# French nuclear flexibility by 2035

# Technically feasible

- The need in cycling would be no more than 80-100/year
- SDDP can be used for dispatching the cycling operations

# Economically viable

- Nuclear profits plateau between 26-50 cycles
- Solar profits x1,5 for the same cycling range



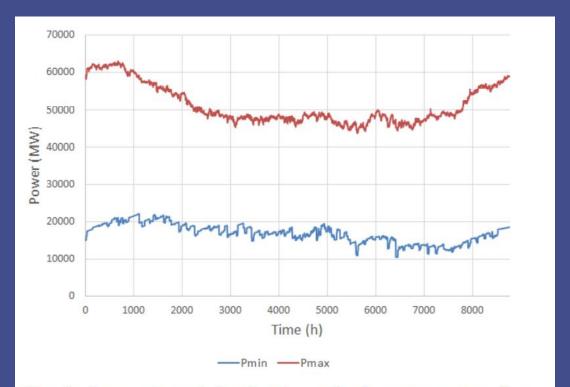



Fig. 3: Respective minimal and maximal output power for nuclear power, based on 2017,2018 and 2019 data

| Technology      | Capacity (GW) | Derating factor | Variable cost (€/MWh) |
|-----------------|---------------|-----------------|-----------------------|
| Solar           | 50            | Ø               | 0                     |
| Wind            | 50            | Ø               | 0                     |
| Hydro reservoir | 8             | 0.86            | 0                     |
| PHS             | 7             | 0.54            | 0                     |
| Nuclear         | 63            | f(t)            | 14                    |
| Biomass         | 2             | 0.9             | 99                    |
| CCGT            | 6.6           | 0.88            | 100                   |
| OCGT            | 4.7           | 0.94            | 151                   |
| OCOT            | 1             | 0.94            | 258                   |
| Imports         | 25            | 0.5             | 268                   |
| VoLL            | Ø             | Ø               | 10,000                |

TABLE II: Generation capacity installed in France in 2035, by technology

| Scenario   | Lower<br>bound (G€) | Mean<br>objective<br>value (G€) | discrepancy |
|------------|---------------------|---------------------------------|-------------|
| flex = 5   | 4.85                | 4.87                            | 0.41%       |
| flex = 26  | 4.54                | 4.55                            | 0.29%       |
| flex = 50  | 4.40                | 4.40                            | 0.10%       |
| flex = 75  | 4.31                | 4.33                            | 0.38%       |
| flex = 100 | 4.28                | 4.29                            | 0.12%       |
| flex = 150 | 4.27                | 4.27                            | -0.19%      |

TABLE III: Convergence data for different flexibility levels

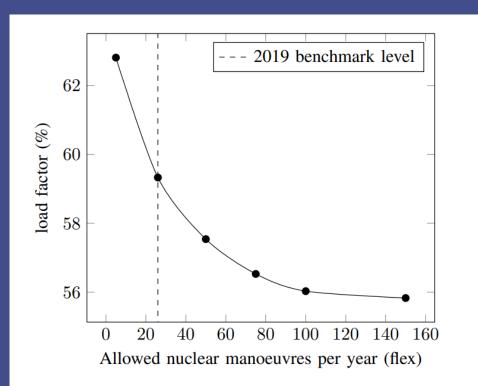



Fig. 5: Average load factor of NPPs as a function of the number of allowed manoeuvres