

How solid are energy futures? A systematic assessment of 63 prominent outlooks

Presenter:

Dawud Ansari (German Institute for International and Security Affairs, DIW Berlin, EADP)

Coauthors:

Seyma Sabire Evli (Oekotec)
Wassim Brahim (DIW Berlin, EADP)
Anna Broughel (Johns Hopkins University)

27 Jul 2023

What are scenarios?

Not forecasting or predicting the future, but **foreseeing** the range of different futures. Focus on plausibility rather than probability.

"Memories of the future" [...] plausible imaginaries capturing hypothetical futures and sequences of events that lead to them (Ingvar, 1985).

Identify Identify Develop Discuss Plausible **Driving** Critical **Implications** Uncertainties Scenarios & Paths Forces **PESTLE** Wild card Scenario \bigcirc Impossible Possible Probable Preferable Source: Ansari D, F. Holz, H. Al-Kuhlani (2019).

Our Sample: 63 outlooks, 230 scenarios, 2019-2021

Most Prominent Technologies: Corpus Word Count

Methodology: Dimensions

Methodology: Indicators

Catchiness

16. Artwork (MacKay and McKiernan, 2010)

17. Visual aids (Borkin et al., 2013)

18. Independent storylines

19. Comparable scenario length

20. Appropriate outlook length (Huss and Honton, 1987)

21. Readability (*Schwartz*, 1996)

22. Cultural references (*Wack, 1985*)

Visionary Thinking

13. Scenarios beyond BAU

(Thompson, 1997)

14. Wild cards (Mendoca et al., 2004)

15. Disruptive change (Bezold, 2010)

Relevance

11. Connection to policy debates (*Wack, 1985*)

12. Policy recommendations

(Lucas et al., 2010)

Transparency

- 1. Clear aims & research questions (Cao et al., 2016)
- 2. Clear method (Godet, 2000)
- 3. Model availability (Godet, 2000)
- 4. Input data availability (Cao et al., 2016)
- 5. Central definition (van der Heijden, 2005)

Consistency

- 6. Qualitative-quantitative consistency
- (Wilson, 1998)
- 7. Definition of drivers & trends
- (Shoemaker, 1991)
- 8. Consistency checks (Amer et al., 2013)

Interdisciplinarity

9. Integration of STEMPLE+ dimensions

(Kahn and Wiener, 1967)

10. Depth of interdisciplinarity (*Brauers & Weber*, 1988)

Science

Art

6

Top 10 outlooks in our sample

Distribution of all outlooks' scores

Outlook Evaluation

- Visual aids, cultural references, and clear aims are often present.
- Almost no wildcards (only DIW and Equinor) or disruptive change
- Weak results regarding the depth of interdisciplinarity, consistency checks, artwork, and appropriate length

- Interdisciplinarity
- Transparency
- Relevance

- Catchiness
- Visionary Thinking
- Consistency

Outlook Evaluation

Large differences between dimensions

Low median scores for catchiness, interdisciplinarity, visionary thinking

Distributions rather concentrated

Interdisciplinarity in the STEMLE-Plus framework

Social

Does the quality depend on the institution's observables?

WEIRD (Global North)

	Category	n	Average Score	t statistic	F statistic	p value	
Scope	Global	30	35.5	-0.5616		0.5764	
	non-global	32	33.7				
Institution type	NGO	7	41.6		2.71	0.0389	
	National public organisation	14	26.9				
	Oil & gas companies	8	39.4				
	Research providers	22	33.0				
Institution goal	Advocacy	7	32.4		0.16	0.8494	
	For-profit	8	35.8				
	Non-profit	11	34.6				
Origin	Non-WEIRD (Global South)	25	35.5	0.4674		0.6418	
	MEIDD (Clabal Nearly)	20	22.0				

38

33.9

12

Conclusions

- ► Majority of outlooks score **below 50/100**. Overall: all 6 dimensions need to be strengthened.
- ➤ Transparency, relevance, and catchiness dimensions are more developed; catchiness, visionary thinking, and interdisciplinary are most in need of better integration.
- ► Art and science dimensions correlate: **good scenarios** fare well in both fields.
- ► **Hydrogen** is mentioned often, but its role is limited to **below 5%** in the primary energy mix even in net-zero visions.
- Geopolitics is a large blind spot and so is security in general (only 7% of outlooks mention it).
- Significant differences based on organisation type but no other observables
- ▶ Only 2 outlooks (DIW, Equinor) integrate wild cards (nuclear fusion, blue death, colonisation of Mars, geo-engineering boom). Scenarios fail to prepare us for the unexpected.

Referenced work

Ansari D, F. Holz, H. Al-Kuhlani (2019). Energy outlooks compared: Global and regional insights. *Economics of Energy & Environmental Policy* (9)1:21-42. Amer, M., Daim, T. U., & Jetter, A. (2013). A review of scenario planning. *Futures*, 46, 23-40.

Bezold, C. (2010). Lessons from using scenarios for strategic foresight. *Technological forecasting and social change*, 77(9), 1513-1518.

Bloomberg NEF (2022). New Energy Outlook 2021, available online at: https://about.bnef.com/new-energy-outlook/

Borkin, M. A., Vo, A. A., Bylinskii, Z., Isola, P., Sunkavalli, S., Oliva, A., & Pfister, H. (2013). What makes a visualization memorable? *IEEE transactions on visualization and computer graphics*, 19(12), 2306-2315.

Brauers, J., & Weber, M. (1988). A new method of scenario analysis for strategic planning. *Journal of forecasting*, 7(1), 31-47.

Cao, K. K., Cebulla, F., Gómez Vilchez, J. J., Mousavi, B., & Prehofer, S. (2016). Raising awareness in model-based energy scenario studies—a transparency checklist. *Energy, Sustainability and Society*, 6(1), 1-20.

Evli, S. S., Broughel, A., & Ansari, D. (2022). Evaluation of Net-Zero Carbon and 100% Renewable Energy Scenarios for 2050 and Beyond. In *The Palgrave Handbook of Zero Carbon Energy Systems and Energy Transitions* (pp. 1-25). Cham: Springer International Publishing.

IEA (2021). World Energy Outlook, Available online at: https://www.iea.org/reports/world-energy-outlook-2021

Godet, M. (2000). The art of scenarios and strategic planning: tools and pitfalls. Technological forecasting and social change, 65(1), 3-22.

Henrichs, T., Zurek, M., Eickhout, B., Kok, K., Raudsepp-Hearne, C., Ribeiro, T., ... & Volkery, A. (2010). Scenario development and analysis for forward-looking ecosystem assessments. *Ecosystems and human well-being: A manual for assessment practitioners*, 10.

Huss, W. R., & Honton, E. J. (1987). Scenario planning—what style should you use?. Long range planning, 20(4), 21-29.

Kahn, H., & Wiener, A. J. (1967). The next thirty-three years: A framework for speculation. *Daedalus*, 705-732.

Lucas, N., Raudsepp-Hearne, C., & Blanco, H. (2010). Stakeholder participation, governance, communication, and outreach. *Ecosystems and Human wellbeing a manual for assessment practitioners*, 33-70.

MacKay, B., & McKiernan, P. (2010). Creativity and dysfunction in strategic processes: The case of scenario planning. *Futures*, 42(4), 271-281.

Mendonça, S., e Cunha, M. P., Kaivo-oja, J., & Ruff, F. (2004). Wild cards, weak signals and organisational improvisation. Futures, 36(2), 201-218.

Schwartz, P. (1996). The art of the long view: planning for the future in an uncertain world. 1st ed. New York: Doubleday.

Schoemaker, P. J. (1995). Scenario planning: a tool for strategic thinking. Sloan management review, 36(2), 25-50.

Thompson, M. (1997). Cultural theory and integrated assessment. Environmental Modeling & Assessment, 2(3), 139-150.

Van der Heijden, K. (2005). Scenarios: the art of strategic conversation. 2nd ed. New York: John Wiley & Sons.

Wack, P. (1985). Scenarios: shooting the rapids. *Harvard business review*, 63(6), 139-150.

Wilson, I. (1998). Mental maps of the future: an intuitive logics approach to scenarios. Learning from the future: Competitive foresight scenarios, 81-108.

Figure 3.3 Final energy consumption by source and sector to 2030 in the Net Zero Emissions by 2050 Scenario

IEA. All rights reserved.

Figure 3.10 ▷ Tracking progress towards 2030 milestones in transport and industry by scenario

Figure 4.20 ▷ Global electricity demand and generation mix by scenario

IEA. All rights reserved.

Table 3.1 ▷ Examples of commercial-scale project development for industrial clusters, hydrogen and CCUS

Project	Country	Technologies	Source of finance	Commercial arrangement	Status
Puertollano Green Hydrogen Plant	Spain	Solar PV, battery storage, hydrogen electrolysis	Utility balance sheet	Use of hydrogen to produce ammonia and electricity by a fertiliser company.	Construction
Humber Industrial Cluster	United Kingdom	CCUS, hydrogen infrastructure/ electrolysis, wind	Private consortium, government grants	Use by heavy industry, refiners, power plants, mobility and grid injection.	Planned
Western Green Energy Hub	Australia	Solar PV, wind, hydrogen electrolysis	Private consortium, government grants	Off-take by mining companies, ammonia supply for export.	Planned
Porthos Port of Rotterdam	Netherlands	CCUS, hydrogen	Private consortium, government grants	Companies supply CO ₂ , public-private partnership manages transport/storage, use by refineries.	Planned
Haru Oni Hydrogen Project	Chile	Wind, hydrogen electrolysis, synthetic fuels, direct air carbon capture and storage	Private consortium, government grants	Export-oriented supply of synthetic fuels.	Construction (demo phase)
Varennes Project	Canada	Hydrogen electrolysis, synthetic fuels	Private consortium, government grants	Feedstock from landfills, sale of synthetic fuels.	Planned

Interdisciplinarity using STEMLE-Plus framework: clustering results

► We use hierarchical clustering to classify the outlooks' performance in term of the STEMPLE-Plus dimension.

Cluster Name	average score(%)								
	Size	Economic	Environmental	Legal	Military/Security	Plus	Political	Social	Technological
The incomplete	22	100	100	100	18	41	100	100	100
The minimalist	37	100	86	41	0	8	5	30	41
The fragile	4	0	25	0	0	0	0	0	0